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Chapter 1

Atoms and Molecules

1.1 Introduction

Historical Perspective

Some important developments that predate our present view of atoms were the Periodic
Table of elements, for which a concept was developed by D.I. Mendeleev in 1869. The
ordering was based on the chemical behavior of the elements. The table was not yet com-
plete. We also mention the work of A. Avogadro, who had conceived the idea that gasses
consist of discrete particles and established the law that equal volumes of gas at equal
pressure and temperature contain the same number of particles. The first determination
of Avogadro’s number was performed by J.B. Perrin. The experiments of J.J. Thomson
on cathode rays were important, leading to the discovery of the electron in 1897. From
the deflection by an electric field one finds the ratio e/m,. In his famous oil-drop exper-
iment in 1906, R.A. Millikan unravelled the two values and determined the value of the
elementary charge e.

Based on the previous concepts Thomson developed a model for the atom consisting
of electrons as negatively charged particles of low mass and some substance that should
carry positie charge and nearly all the mass within the atom. The atoms were thought
to consist of a mixture of A positive particles and A electrons. In this model the atomic
number Z did not yet play a role. After his studies into radioactivity E. Rutherford in
the first decade of the 20th century performed scattering experiments with a particles to
investigate the structure of the atom. Conclusions drawn from the angular distribution of
the scattered particles were that the atom was in essence empty with a heavy positively
charged nucleus at the center carrying all the mass of the atom within a size of few fm
and electrons around this extending up to distances of a few A.

There are, however, a number of shortcomings to this planetary model of an atom
bound by classical electromagnetic forces, such as

e The problem of stability of the electrons. Electrons are accelerated in their orbits
but they do not loose energy.

e The model does not give any indication for the size of the atom.
e The model does not give an explanation for the characteristic spectroscopy of the

atom.
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Spectroscopy

Investigation of atomic spectra started in early 19th century with the discovery of dark
lines in the spectrum of light from the Sun by among others J. von Fraunhofer. Moreover
heating elements gave rise to emission of discrete lines. Kirchhoff explained the difference
between absorption and emission spectra and showed that the spectrum was characteristic
for the elements. This made it possible to identify new elements, e.g. Helium was first
discovered on the Sun before it was found on Earth.

E E E

Absorption or emission of

lightquanta with energies hw = hv =

— he/ A = Ey— Ey, corresponding to the

difference of two energy levels for the

electrons in an atom. The atom A

A A is after absorption left in an excited

Atom ‘ * A* ‘ state A*. Characteristic quantities of

‘ ‘ the photon are the radial frequency

* * w or the frequency v = 27 w and the
% % wavelength .

absorption emission

Balmer was the first to recognize a regularity in a series of lines in the Hydrogen atom in
1885, in 1890 generalized by J. Rydberg. He found

1 1 1
5= P (= ) -

for integer n and m, from which one can deduce the energy spectrum of the Hydrogen
atom. The constant Ry = (u/m.)Rs (where p is the electron’s reduced mass in Hydro-
gen, which will be discussed below) is named after Rydberg.

The series of lines m — n = 1 are called the Lyman series, the lines m — n = 2, the
Balmer series and the m — n = 3 the Paschen series. The limiting (shortest) wavelength
of the Lyman series is at 91.1 nm in the ultraviolet, that of the Balmer series at 364.5 nm
in the visible light, while all higher series have the limits in the infrared and beyond.

The Bohr model of the atom

The model of N. Bohr of the atom imposes quantization in an ad hoc way by requiring
L = nh with n being integer. For the electron in the atom one obtains after using the
condition that the central force to bind the electron is provided by the Coulomb attraction,

mu? 7 2

= 1.2
r Ameg 2’ (1.2)

Using the condition on L to eliminate v one immediately finds:

n? 4dmey b’
"=7 me (13)
22 me!

(1.4)

n— 5 ’
n? 32m2elh?
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which turns out to give the correct (quantized) energy levels and also a good estimate of
the radii (see next section). At the classical level the Sommerfeld model of the atom even
includes quantization conditions for treating elliptical orbits.

1.2 The Schrodinger equation for the hydrogen atom

The starting point for the quantummechanical treatment of the hydrogen atom is the

hamiltonian
_n — Ze?

2m dregr’

(1.5)

We will discuss the solution of this hamiltonian and its refinements, first recalling the
various steps

Transformation to the center of mass

In fact one starts with the hamiltonian for the nucleus of the hydrogen atom, a proton,

and the electron,
H:—h—ZVQ— R _, Ze?

p
2m,,

- 1.6
2m, ¢ Ameg |re — 1Ty (1.6)

This can using total mass M = m, + m, and reduced mass 1 = mem,/M be rewritten in
terms of the center of mass and relative coordinates,

MR = m,r, + mer,, (1.7)
T =T — ’rp’ (1'8
and dito momenta
P =p,+p,=—ihVg, (1.9)
P_P_ P _ ;v (1.10)
B e My
One obtains ) 9 )
fi I Ze
H=—-——V3,__V?_— ) 1.11
oM " E oo T Admeyr (1.11)
————— -~ _
Hem Hrel

The hamiltonian is separable, the eigenfunction ¢z (R, r) is the product of the solutions
Vg (R) of Hem and g, (7) of Hye, while the eigenvalue is the sum of the eigenvalues.
In particular one knows that vp, (R) = exp (i P- R) with E,, = P?/2M, leaving a
one-particle problem in the relative coordinate r for a particle with reduced mass .

Time dependence

The hamiltonian determines the time dependence of the wave function,

. 0
—ih 5% Y(r,t) = Hy(r,t). (1.12)
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For a hamiltonian that does not contain explicit ¢-dependence, one can separate the time
dependence. One has ¥(r,t) = ¥g(r) e *F¥" for the time-independent eigenfunctions
Y (r) of H with eigenvalues E,

Hpp(r) = E¢p(r). (1.13)

Spherical coordinates

Introducing polar coordinates it is straightforward to write

2
vz L9 (7"2 a) +e—. (1.14)

r2or or 72

where £ = r X p are the three angular momentum operators. The hamiltonian actually
commutes with all three angular momentum operators, [H, £] = 0. Since ¢,, ¢, and ¢, do
not commute with one another, one makes a choice to find a set of commuting operators
(hence, with a common set of eigenfunctions). An appropriate set is H, £% and £,. The
eigenfunctions of the latter two determine the angular dependence of the eigenfunctions
of the hamiltonian (see appendix on spherical harmonics),

vren(r) = 20 yrn(9, ), (115

where ugy(r) satisfies the radial Schrodinger equation’,

RS &> RPe(L+1)  Zé?
- - —-F = 1.16
2m dr? * 2mr? dmeg T upe(r) =0, (1.16)

Vesr (1)

with boundary condition ug,(0) = 0 or more precisely, ug(r) =9 e

Solving the differential equation

First of all it is useful to make the radial equation into a dimensionless differential equation
for which we then can use our knowledge of mathematics. Define p = r/ay with for the
time being aq still unspecified. Multiplying the radial Schrodinger equation with 2m a?/ 12
we get

2 ((l+1) € 2may Z 2malFE

-—— — — - =0. 1.17

dp? + 2 Arey, B2 p 72 Ue(p) ( )
From this dimensionless equation we find that the coefficient multiplying 1/p is a number.
Since we haven’t yet specified ag, this is a good place to do so and one defines the Bohr

radius

Arreg B2
ap =

(1.18)

me?

! Note that one often encounters the radial wave function R,¢(r) = un¢(r)/r. The advantage of working
with uny is that the radial Schrédinger equation has the form of the one-dimensional Schrédinger equation
(with a boundary condition).
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The stuff in the last term in the equation multiplying F' must be of the form 1/energy.
One defines the Rydberg energy

h? 1 €2 me?
Ry = = = . 1.19
2maZ 2 4mepay  32m2 h? (1.19)
One then obtains the dimensionless equation
2 Le+1) 27
+ ( 5 ) _2Z_ €|ug(p) =0 (1.20)

Cdp?
with p=1r/ag and € = E/R.
Before solving this equation let us look at the magnitude of the numbers with which
the energies and distances in the problem are compared. We have

P

dmegh®  4Ameghe R 1 h
gp= 0l O 2~ 2~ 053% 10710 m, (1.21)
me e mc a mc

h? 1 (he 1
Ry = =—a|l—]|=-a’mc® ~13.6eV. 1.22
2m a3 2a<a0> g & ¢ ¢ (1.22)

One thing to be noticed is that the defining expressions for ag and R, involve the electro-
magnetic charge e/,/€; and Planck’s constant 7, but it does not involve c¢. The hydrogen
atom invokes quantum mechanics, but not relativity! To evaluate the expressions using
our unit-analysis one of course can introduce c afterwards in making estimates. Secondly
the nonrelativistic nature of the hydrogen atom is confirmed in the characteristic energy
scale being R,,. From Eq. 1.22 we see using o = 1/137 that it is of the order 10~* —10°
of the restenergy of the electron, i.e. very tiny!

Next, we can turn to an algebraic manipulation program or a mathematical handbook
to look for the solutions of our dimensionless differential equation (see appendix B.1 on
Laguerre polynomials). We see from this treatment that (usingp > n—/¢—1,a — 2(+1
and z — 2Zp/n) the solutions for hydrogen are

2Z\'? |(n—t-=1)" _, . (2Zp\*" 27p
= (2= T eZein (ZZ20) 241 (—) 1.23
UnelP) (nao) 2n (n+2£)! ¢ ( n ) L\ g (123)
with eigenvalues (energies)
Z2

labeled by a principal quantum number number 7n, choosen such that the energy only
depends on n. For a given £ one has n < ¢+ 1. Actually n, =n — ¢ —1 is the number of
nodes in the wave function.

Note that in fact one should be using the reduced mass instead of the electron mass.
This means replacing everywhere ay — a, and Ry, — R, e.g. E, = —(Z*/n*) R, and
p =r/a,, where

Aeq B2 .
g, =~ ey (1.25)
[e 7
hQ
- "R, (1.26)
2pa;  me

Ry,
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This causes e.g. a small difference in the levels and hence the spectral lines of different
isotopes, the socalled isotope shift. We note that also the Hartree is used as a reference
energy, being equal to twice the Rydberg energy.

' E [Rydberg]
The spectrum of the hydrogen
atom. For a given n one has
-1/9 + % 3s Egi; 3 (10x) 3d degenerate /(-levels with ¢ =
-1/4 + ————25 ———2p 0,1,...,n — 1. The degeneracy,
including the electron spin, adds
up to 2n2. The hamiltonian is in-
variant under inversion, hence its
eigenstates are also parity eigen-
states. The parity of 1y, is given
1L & g by T = (=)L

1=0 I=1 =2

Some explicit solutions are:
1/2
(2)" e ()
Qo ap /)’
1 /zZ\"* _, Zr 1 Zr

_ 1z ~Zr/2a0 (2T 1___> 1.28

UQO(T) \/5 (CL()) ¢ (a()) ( 2 Qg ( )
2

1 /zZN\"?* , Zr
_ ol —Zr/2a0 [ Z° 1.2
21 (T) 2\/6 (CLO> ¢ ( Qo ) ( 9)

2 (Z\'"?* _, Zr 27r 2 (Zr\?
_-_Z (= —Zr/3a0 [ £ 1—- 222 il (_) )
U3O(T) 3\/§ (CL()) ¢ (a() ) < 3 Qg + 27 Qo > (1 30)

[\)

uio(r) = (1.27)

8 Z\'"? Zr\>? 1 Zr
_ I\ zrpza0 (TN (1L _) 1.31
U?’l(r) 27\/6 (&0) € (a0> ( 6 (¢1) ( )
4 Z\'"? _, Zr\*®
_ < —Zr/3a0 [ £T 1.32
uaa () 811/30 (ao) ¢ (a()) (1:32)

Useful integrals involving the solutions are expectation values like

2 2

<2—%) = o5 [n? =30+ 1) +1], (1.33)
(aio) - % [3n% — £(¢+1)], (1.34)
<%) = % (1.35)
<i—§) = WZ;) (1.36)

(R
3 L+ 1)(20+1)

(1.37)

We note that the Bohr quantization condition not only gives the right characteristic size
(ag) and energy (R ) and the right power dependence on quantities like Z, but what is
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more surprising also the right power behavior of the quantum numbers (n, £). Note e.g.
that the Bohr model gives 7 o< n? and (indeed) all the expectation values involving r?
have a polynomial behavior in (n, £) of order 2p.

The full hamiltonian for the Hydrogen atom has a number of additional terms, which
give rise to splittings in the spectrum. These level splittings give rise to splitting of lines
in emission and absorption spectra. Before discussing the fine structure and hyperfine
structure we discuss radiative transitions.

1.3 Radiative transitions

Optical transitions in a two-level system

In an important paper in 1917, Einstein discussed the radiation balance in a two-level
system. Involved are two levels with energies E; and F,, such that Fy — Fy = hy =
hw, i.e. the transition corresponds to a photon energy corresponding with frequency v or
w = 21 v. We assume an energy density of the radiation field of u, and level populations
ny; and ny, which may depend e.g. on the temperature 7.

level 2

E2 nZ(T)
A |Bu, |Cu,

El level 1 nl(T)

One has in the system
e spontaneous emission from level 2 to 1 (first arrow),
e stimulated emission from level 2 to 1 (second arrow),
e absorption from level 1 to 2 (third arrow).

The Einstein coefficients A, B and C' are the proportionality constants that determine
the change in the population according to

d
% = Cuyni — (A+ Buy)no, (1.38)
dn1 d’I’LQ

e dne 1.39
dt dt (1.39)

with the constraint n; + ny, = constant. In the stationary state one has dng/dt = 0 and
thus

nt A+ Bu,
— = 1.40
Noy Cu, ’ (1.40)
which for a system in thermal equilibrium is equal to a Boltzmann distribution
ﬂ — e—(El—Eg)/k‘T — ehw/kT‘ (1.41)
N2
One finds that A A/C
Uy e / (1.42)

~Cni—Bny e —BJC
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This agrees with Plancks black-body radiation if

B=C, (1.43)
A 8riv®  8r

These results are indeed found in a quantummechanical treatment. Using the energy den-
sity for black-body radiation one sees that for emission the ratio of spontaneous/stimulated
emission is given by

spontaneous emission A hw/KT _ q
— —e -

= 1.45
stimulated emission Bu, ( )

Thus for low frequencies (hw < kT or A > 2w hice/kT) there is no spontaneous emission,
e.g. for T' =1 K there is no spontaneous emission for A > 1 cm.

Principle of lasers and masers
The total emission over absorption ratio is

total emission  np A+ Bu,

= , 1.46
absorption ny Cu, ( )
which in an equilibrium situation is given by
total emiésion _ M [1 n A _m | n 8rv3/c? (L.47)
absorption ny Bu, ny U,

With u,, being mostly large the second term (spontaneous emission) can be ignored. Hence
to stimulate emission we need to make sure that ny > n;. This can be achieved via a
two-step mechanism.

3
Sgontaneous emission Via a pump mechanism electrons
metastable are excited to level 3, from which
absorption _State o they via spontaneous emission reach a
(pump) stimulated emission metastable state with a lifetime long
ground enough to achieve ny > n;.
State

Transitions in atoms

The electric dipole operator for a system of Z charges is given by
z
D = Zei r;, (148)
i=1

where e; are the charges and 7; is the position operator. For our purposes, it is important
to know that expectation values of the electric dipole operator can be measured via
absorption or emission of photons. Since the photon transfers energy to the system in the
case of absorption or takes away energy in the case of emission one deals in these cases
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with transition matrix elements. The details of the interaction with the photon and the
use of Fermi’s golden rule to find the transition probabilities will be dealt with in courses
on Quantum Mechanics and/or Electrodynamics (see Appendices). We will state the for
us important results as the Einstein coefficients. For stimulated emission or absorption
of a photon with polarization direction € one obtains via Fermi’s golden rule

™

Dy ]?. 1.49
eohﬂ 12| (1.49)

B2—>1 =
Here D5 is the dipole transition matrix element,

Dyy = / & i(r) D - eo(r). (1.50)

It depends on the polarization of the photon involved which operator is needed. In fact
one needs the operator D - €, where the vector € gives the photon polarization, which can
be chosen as linear polarizations (&, g or 2) or given a specific direction of motion (e.g.
the z-direction) circular polarizations €+ = F(& & i¢)/v/2. One has

4
D, =—eri[2Y/(0.¢). (151)
. 4T o
D.-z=—er ?Yl(O,gp), (1.52)
dr 4
D.-e_=-er 3 Y7 (0, ). (1.53)

For spontaneous emission one finds the same dipole matrix element governing the tran-
sition. To obtain the result one needs to also quantize the electromagnetic fields. The
result for one level to a specific other level is given by

3
w
A2—)1 =

> Dl (1.54)

3
meohe®

As we will see a particular transition always involves a photon with a particular polariza-
tion. If there is no preferential direction (e.g. caused by an external magnetic field), one
can average over the polarizations, giving averaged coefficients

S ™

B2%1 = m |D12‘2, (155)
0

- w?’ 2

A2_>1 - W |D12| y (156)

where |D1s|? = [(1|D,|2)|?+ (1| Dy|2)[*+|(1|D,|2)|*. For transitions involving degenerate
levels, the probability is multiplied with the degeneracy of the final states (probability is
larger if a level can decay in more ways) and divided by the degeneracy of the initial state
(we see an average of the decaying levels). The lifetime of a specific level is given by

1
i Aa

(1.57)

T =
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Scaling the dipole operator via a( one finds that the typical magnitude of the probabilities
for e.g. spontaneous emission is given by

A:w%%%<w2:gi@@)zﬂ3 (AN

3meg he® \ eay 3 h R eag )

Taking fiw ~ Ry and (D) ~ eaq gives A ~ (1/137)3(13.6 eV/3 x 6.6 x 10716 eVs) ~
1/(8 x 10719 ).

Selection rules

Since the relevant operator to calculate dipole transitions is the position operator, the
calculation of the matrix elements can be done disregarding the spin wave functions. In
fact the spin wave function doesn’t change, giving rise to a spin selection rule: mg; = myo,
ie.

As=Am, = 0. (1.58)

In fact the photon polarization determines which of the components of the position op-
erator is the relevant operator. Using the representation as one of three Y;"”, one needs
(consider one electron) the integral

<1|7‘ : 6‘2> = \/%/d?’r ¢Z1€1m1 (’l‘) r Y1m7 (97 (:0) ¢n2€2m2 (T)a

which factorizes into

47T mi % m m2
(1 €2) = |7 [ dr rosn, () s () [ 492 Y (0,0) VI (0,0) Y200, ).

From the ¢-dependence of the spherical harmonics one sees that the matrix element is
proportional to

/dgp et el ¥ im0 — o §(mgy + My — M),

giving rise to the selection rule
Amy =0, £1, (1.59)

each of these corresponding to a specific photon polarization. In fact, the integrals for
the ¢-dependent part is simple, but more general the same applies for the Y,;”-functions
in case of the full angular integration. One only gets a nonzero result if the addition
of angular momenta [¢3, mo) and |1, m,) can yield the final state |¢;,m;) via the well-
known angular momentum addition rules. In fact the result is simply proportional to the
Clebsch-Gordan coefficient in this recoupling,

A7
(1lr - €)2) = \/ ?/dr T Uny gy () Unoty (1) C(1, 1m0y, Loy mig; €1, m04).

This leads besides the m-selection rule to |A¢] < 1 Knowing the parity of the spherical
harmonics one immediately gets a Parity selection rule, namely II;II; = —1 or with
I1 = (-)*, one is left with

Al = £1. (1.60)
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Rotational invariance also requires that the sum of the total angular momentum in initial
and final state is conserved. This becomes relevant if the spin quantum numbers of
electrons and/or nuclei are included. In many cases the orbital angular momentum no
longer is a good quantum number. Still, even when ¢ and s are coupled to j, or for
many particles L and S are coupled to .J, the transition operator involves a simple Y;"",
implying

AJ =0, £1 (1.61)
(with J =0 — J = 0 forbidden!).

Other transitions

The interactions (absorption or emission) of photons in atoms can also proceed via differ-
ent operators. The one treated here is known as electric dipole radiation (E1). In order
of strength one has also the magnetic dipole radiation (M1), electric quadrupole radiation
(E2), etc. For instance electric quadrupole radiation is governed by operators of the type
z;v;. Recall from quantum mechanics that the latter operators give rise to transition
selection rules in which parity is not changed and since the operators are proportional to
r?2Y," one has Al = 2.

1.4 Refinements in the spectrum of hydrogen

Perturbation theory

Perturbation theory describes a systematic way of obtaining a solution for a hamiltonian
H = Hy+ AV in the form of an expansion in the (small) parameter A, assuming the
solutions of Hy are known, (Hy — E{?) |¢,) = 0. One inserts the expansions

E,=E9 + XEW + ¥ E® ¢ | (1.62)
[Un) = [6n) + Al0)), (1.63)

into the Schrédinger equation (H — E,)|v¢,) = 0. After ordering the terms according to
the power of A, one finds at first order

AES) = (¢ AV o), (1.64)

Pm|AV|dn)
M) = [62) + 3 ) LAV 100)
n " n;n m Ey(;g) _ quo)

Perturbation theory is very useful if the first-order shift in the energies is small. The second
equation warns us that in the case of degenerate levels for the unperturbed situation
one must make sure that the degenerate states must be labeled as eigenstates of the
perturbation A V.

(1.65)

Fine structure in hydrogen
The mass correction

In the hydrogen atom there are a number of additional terms in the hamiltonian that can
be attributed to relativistic corrections,

H = Hy + Hpass + HFoldy + Hy, (166)
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The first term is a correction coming from the difference of the relativistic and nonrela-
tivistic kinetic energies,

2 4

/ b b
Hmass = p202 +m?ct — m02 - % ~ _8m302' (167)

Including this correction, the operators £% and £, still remain compatible with the hamilto-
nian, but the radial dependence now will be modified. However in first order perturbation
theory one obtains an accurate estimate of the energy shifts by calculating the expectation

value of the correction. We here just state the result (treated in many quantum mechanics
books),

4
p 5 R 1 3

AFE (nfm) = (nfm|———=|nfm) = —a* — - — . 1.68

s )= |8m302‘ ) n3 <€+ % 4n ( )

Another interaction term arises because of the interaction of the spin with the induced

magnetic field by the orbital motion. It can be up to a factor 2 be derived with classical

arguments, but a proper derivation requires the use of the relativistic Dirac equation for
the electron. The result for a particle in a central potential is

1 1dV,

Hy = £ s. (1.69)

2m2c? r dr
When applying perturbation theory for this term one must be careful. One cannot sim-
ply calculate the expectation value between hydrogen states |nfsmgms). Since the level
is 2(2¢ + 1)-fold degenerate the perturbation mixing these degenerate states. Application
of perturbation theory requires a reordering of these states, such that they are compat-
ible with the perturbation. Instead of the brute force way of diagonalizing the matrix
(nlsmym!|Hgo|nlsmemy), there is a smarter way. By rewriting

Z-s:%[jQ—EQ—SQ],

one sees that the operators €2, s2, j and 7, (which from the theory of addition of angular
momenta are known to be compatible with each other) are also compatible with the
hamiltonian. This is not true for the set £2, s2, ¢, and s,. Hence if we use states |nlsjm),
the correction term has no off-diagonal elements, hence does not mix the unperturbed
states and the splitting for the correct combinations of states is directly found as

. 1 . 1dV, .
AEg(nlsjm) = W(nﬁsym|; Wﬂ - s|nlsjm,)
Ot Al [+ 1) - e+ 1) — (s + 1)
T 327eg m2c? " ﬁn U+ - o8

_ e’ G+ —Ll+1)—s(s+1) (1.70)
32mey m2c? adnd (L +1)(0+3) .

We thus must couple ¢ and s to j-eigenstates. For one electron with a given ¢ # 0 there
are two possibilities for j, namely 7 = ¢ + % giving for £ # 0

R 1 1
AE, (nlj) = a? = - 1.71
i) = % (= 1) ()
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and for the combined result

R 1 3
— 2 77>
AEmass +s0 = —C F (] + % - E) (1'72)

The Foldy term is a relativistic correction proportional to 62() and thus only affecting
s-waves. It makes the above equation valid also for s-waves. Schematically (not on scale)
one has the following fine structure in the hydrogen spectrum

%P3/
Ep=-34¢eV gs :\11,2 \\\\\\2P3/2
S1/2 25
Do, 12 6
/ Pz ~*—=:::—2_: o f 4x10 ~ eV
5.7x10° eV P1/2
Lamb-shift
2s
1/2 -
El =-13.6eV 1s ---- . 5.9x 10 6 eV
T  F=1y
spin—orbit F=0 +
HO spin—orbit  mass
Foldy hyperfine structure

The various terms cause shifts in the order of 107 eV, giving within a orbit characterized
by the principal quantum number n states with well-defined j-values. We denote such a
level with a term symbol, for hydrogen

(TLE) (25+1)LJ

where (nf) indicates the spatial part of the electron wave function, 25 +1 is the total spin
multiplicity and L is the total orbital angular momentum of the electrons (using notation
S,P,D,...for L =0,1,2,...). In this specific case of hydrogen with just one electron
S =1/2 and the multiplicity is always 2 while L = £. The splitting of the 25’1/2 and 2P1/2,
the socalled Lamb shift, is due to several higher order effects. It is about 4 x 10°¢ eV
and produces a splitting of the Lyman « line. Also transitions between both levels are
possible via an E1 transition with frequency of about 1 GHz.

The hyperfine structure in hydrogen

The hyperfine structure in hydrogen is due to the interaction of the magnetic moments of
electron and nucleus. Also the proton has a magnetic moment, which induces a magnetic
dipole field felt by the electron and vice versa. It produces an interaction term, which for
s-waves is of the form

1
Vis = -, V? ~. (1.73)

6meg 2 He
We know that p, = g. (e/me) S and u, = g, (e/M,) I (where we use the in atomic physics
conventional notation I for the nuclear spin). The splitting thus is proportional to

AE, x 0., (8 1) = 3 gogph? [F(HF1) = S(S +1) - II+1)]. (174)
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The proper eigenstates are labeled by eigenstates for the angular momentum operators
F? and F,, where FF = S + I. For normal hydrogen in the ground state (I = 1/2), it
produces two states with F' = 0 (para-) and F' = 1 (ortho-hydrogen). The splitting is
much smaller than the fine structure. For the (1s)2Sj/, level in hydrogen the splitting
is 5.9 X 1078 eV (see figure in previous section), corresponding to a transition frequency
vpy = 1.42 GHz or a wavelength of 21 cm. Although the radiative transition is heavily
suppressed (it is certainly not an electric dipole transition!) it plays a very important role
in radio astronomy. It traces the abundant occurence of hydrogen in the universe not in
the least since the 21 cm wavelength is not strongly attenuated by interstellar dust.

1.5 Many electron atoms

Permutations for identical particles and the Pauli principle

The hamiltonian for Z electrons in an atom (omitting at this stage fine and hyperfine
interactions),

Z K? Ze? Z e?
H(Tb---ﬂ“z;pp---apz):z( V? )-l-z— (1.75)

= " om " Amegr; iS5 dme lri —
is invariant under permutations of the particle labels, 7 <> 7, written symbolically as
H(l...i...j...Z)=H(1...j...1...2). (1.76)
Consider first two identical particles and assume an eigenstate ¢(12),
H(12)6(12) = Eé(12),
Because H(12) = H(21) one has also
H(21)¢(12) = E¢(12).
Since the labeling is arbitrary one can rewrite the latter to
H(12)¢(21) = E¢(21).

Thus there are two degenerate solutions 1(1,2) and (2, 1). In particular one can choose
symmetric and antisymmetric combinations

#5/4 = $(12) £ 9(21), (L.77)

which are also eigenstates with the same energy. These are eigenfunctions of the per-
mutation operator P,;, which interchanges two labels, in general Pj¢(1...5...5...) =
¢(1...75...1...) with eigenvalues + and - respectively. This operator commutes with H
and the symmetry is not changed in time.

For three particles one has six degenerate solutions, ¢(123), ¢#(213), ¢(231), ¢(321),
#(312) and ¢(132). There is one totally symmetric combination,

¢% = ¢(123) + ¢(213) + $(231) + $(321) + $(312) + $(132) (1.78)
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(any permutation operator gives back the wave function), one totally antisymmetric com-
bination
¢° = ¢(123) — $(213) + ¢(231) — $(321) + ¢(312) — $#(132) (1.79)
(any permutation operator gives back minus the wave function) and there are four combi-
nations with mixed symmetry. Nature is kind and only uses the symmetric wave functions
(for bosons) or the antisymmetric wave function (for fermions). Particles with integer
spin turn out to be bosons, particles with half-integer spin are fermions. For instance
for electrons which have spin 1/2 (two possible spin states) the total wave function must
be antisymmetric. This has profound consequences. It underlies the periodic table of
elements.
Consider again for simplicity first a two-particle system. When we as a further ap-
proximation neglect mutual interactions, one has a separable hamiltonian of the form

H = Hy(1) + Hy(2).
Suppose the solutions of the single-particle hamiltonian are known,
Hy(1)$a(1) = Eatpa(1), Ho(1)d5(1) = Epgp(1),

etc. Considering the lowest two single-particle states available, there are three symmetric
states and one anti-symmetric state,

ba(1) ¢a(2)

symmetric: Ba(1) 95(2) + dp(1) 0a(2)
o(1) 96(2)

antisymmetric: a(1) dp(2) — (1) Pa(2)

For bosons with a symmetric wave function one sees that they can all reside in the lowest
state, while any two fermions cannot be in the same state, known as the Pauli exclusion
principle.

A general way to obtain the completely antisymmetric wave function for a separable
potential is by constructing the antisymmetric wave function as a Slater determinant,
for instance for three fermions the (properly normalized) antisymmetric wave function
constructed from three available states ¢a, ¢p and ¢, is

0 o e (1.80)
1 ®(2) #6(3) |- 1.80
f 1 60(2) 6e(3)

The most well-known application is the consecutive filling of atomic levels 1s, 2s, 2p, 3s,
3p, 4s, ..., giving the periodic table of elements. The available states for each of the
levels is 2(2¢ + 1) accounting for the spin-degeneracy and the ¢-degeneracy.

¢4 (123) =

The Helium atom

As a first-order description of the helium atom, one can consider the independent-electron
approximation, starting with a hamiltonian in which the electron-electron interaction is
neglected, as well as any interactions involving the spin of the electrons. In that case
one has a separable hamiltonian and for each of the electrons the solutions are given
by hydrogen-like states (Z = 2), characterized by (nf). Let us investigate the possible
ground-state configurations, (1s)? and the first excited levels (1s)(2p) and (1s)(2s).
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e The ground state configurations (1s)2.
Knowing the two angular momenta involved is sufficient to know the parity of these
states, Il = (—)%(—)® = +. The angular momentum recoupling works in the
following way.

— Combining ¢, = 0 and ¢, = 0, the only possibility is L = 0. The orbital wave
function then is symmetric under the interchange of the two electrons 1 and 2.

— Combining the spins s; = 1/2 and so = 1/2 gives two possibilities, S = 0
or S = 1. The first possibility is antisymmetric under the interchange of the
electrons, the second is symmetric.

— The total wave function (product of orbital and spin parts) must be antisym-
metric for fermions according to the Pauli principle, hence L = 0 can only be
combined with S = 0. This leaves only one possibility for the total angular mo-
mentum, J = 0. The notation for the only allowed ground state configuration

1S
(n1 El)(ng 62) 25+1LJH = (18)2 15()4—.

e The configurations (1s)(2p) with parity IT = —.

— We have L = 1, but appearing twice. We can construct the symmetric and
antisymmetric combinations,

1 [uis(r) Usp(T2) Usgp (1) U15(79)
sfla 1s\"'1 2p\"'2 M M
LMy o | () I;T V() £ 1;1 ) T2 Yo%)

for the spatial part.

— The combination of the spins gives again an antisymmetric S = 0 and a sym-
metric S = 1 wave function.

— The allowed configurations are thus obtained by the appropriate antisymmetric
combinations of orbital and spin parts,

(1s)(2p) 'P-  and  (15)(2p) *Po-1- o
e The configurations (1s)(2s) with parity II = +.

— We have L = 0, but now also appearing twice in a symmetric and antisymmetric
combination.
— As above, antisymmetric S = 0 and symmetric S = 1.

— This gives the allowed configurations
(15)(25) 'Sp+ and (15)(25) ®S+.

Summarizing in tabular form

Configurations in Helium

configuration EO®/R | L |S | Parity | Symmetry | J-configurations | # states
(18)2 -8 010 + A 1SO+ 1

1 - S not allowed 3
(1s)(2p) & (2p)(1s) -5 10| - S/A 'p- 3

1 — S/A 3Py~ 1- - 9
(1s)(2s) & (2s)(1s) ) 00 + S/A 'So+ 1

1 + S/A 351+ 3

116



Important to note is that although additional terms may be present in the full hamilto-
nian, the solutions found in this way do form a complete set of states for the atom. Other
interaction terms give rise to shifts in the zeroth order energies and they may mix the
states.

Refinements for helium
Perturbative approach
Including the ee-interaction the hamiltonian for 2 electrons in an atom is

h? Ze? K2 Ze? e’
H(ri,r9;p1,py) = ( Vi 7) + (-— v; ) +

- — 2 —
2m 47'('607‘1 2m 471'60’/‘2 47T€0 |’l"1—’l"2|’

v ~ v

~~ ~~

H1 H2 H12

which does not factorize because of the electron-electron interaction term. A way to
account, for the ee-interaction is by treating it as a perturbation on the result in the
previous section. In perturbation theory the shift of the lowest level in the zeroth order
approximation for helium, the (1s)?1S; multiplet, is simply given by the evaluating the
ee-interaction term between the unperturbed wave function, which can straightforwardly
be calculated

62

5
= Z R, (1.81)

AEgs = /d37‘1 d37‘2 ‘¢1s(7‘1)‘2 |¢15("°1)|2 m = 1
giving as estimate for the binding of the 1.S; level E = (—2Z2 + g Z) R, which for Z = 2
gives E ~ —5.5 Ry, considerably higher than the previous result E© = —8 eV and not
bad as compared to the experimental value Eg = —5.81 R.

For the next multiplets one has a spatially symmetric or antisymmetric wave function
of the form ¢ = 1)1 + 1),, the sign depending on the spin wave function and one obtains
for the expectation value of the hamiltonian,

(WIH]p) (Y Ehe|Hy + Hy + Hig|thy & 1)

(Wlyy (Y1 & o|thy £ 1)

C+K
= F E. _— 1.82
1+ 2+1:|:Sa (1.82)

where

1 |th1) = (olthe) =1 (assumed normalized),

V1| Hylh) = E; (i=12),

Yr|ha) = (halthr) =S (overlap integral),

V1| Hilpo) = (Yo|Hiltho) = E; S (i=12),
VY1|Hio|th1) = (a|Hia|the) = C (Coulomb integral),
Y1 |Higlwe) = (Yo|Higlth) = K (exchange integral).

N N N N~
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eV |
24.6

Looking at the (1s)(2p) and (1s)(2s) con-
figurations and the shifts in perturbation
theory, the exchange integral K turns out
to be important yielding the lowest energy
(19)(2p) _.-- 1p for the antisymmetric spatial wave func-

T e 3p tion. These are combined with S = 1.
M::: ' For the excited levels of helium the S =1
"""" 3s (ortho-helium) multiplets have the lowest
+ energies. The groundstate configuration
of helium only has S = 0 (para-helium).
In the figure some dipole transitions have
(192 I 1g been indicated.

ionization energy

[EEY
)]

0

Variational approach

The variational method is used to obtain an estimate for the ground state energy and
the ground state wave function for a given hamiltonian. This is done by taking a trial
wave function [Y[q, a,,.]) depending on a number of parameters o; and calculating the
expectation value for the (given) hamiltonian,

(Yra1,00,. H | V[ar,00,..0) .
<¢[a1,ag,...] |1/J[a1,a2,...]>

It is a simple exercise to show that if the true solutions and energies of H are given by
(H — E,) |¢n) =0, that

(1.83)

E[al,aQ,...] =

E[al,az,...] Z EO) (184)

with the equal sign being true if [¢[4, as,..]) = ¢o. By minimizing the expectation value
of the hamiltonian by varying the parameters,

8E[a1,ag,...]

o= 0, (1.85)

one hopes to get close to the true ground state. The succes of the method not only
depends on the number of parameters used and the calculational power of computers,
but also on smart choices for the trial wave function such as choosing the correct
symmetry, the correct number of nodes and the correct asymptotic (large and small r)
behavior of the wave function.

As a trial function for the He ground a good ansatz is a simple product of wave functions,

3
(67
Yr(r,me) = —emom/memen/e, (1.86)
0

By allowing the coefficient « in the exponent to vary, we try to incorporate the screening.
We can use the variational approach to see how well we can do. With the results from
the sections on the hydrogen atom and those of the previous section we find

h2

h?
o (V14 V3) ur) = @ =207 R, (1.87)

(Yr| —
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—7Ze? /1 1 27 ¢?
— 4+ — = — =47a Ry, 1.88
(wr| 4meg (7"1 7‘2) [vr) 4meg ag « “ ( )
el ) = 2R (1.8
regry 1) 47 ’
and thus 5
Ejq =2 o?—(2Z - =) a| R, (1.90)
8
which is minimized for 5
=Za=7— — 1.91
o eff 16 ( 9 )
with
5 2
Flomn| =272 — — - 1.92
ana] =2 (2 = 36) & (192
For He this gives Ey = —5.7 R, wich is within a few percent of the experimental value

of =5.81 Ry, = 79.0 eV and much better than the perturbative value (which of course is
just the result obtained for a = 2). As expected the value Zog = 27/16 is less than 2.

Ionization energies and electron affinities

Some results that we have encountered in the previous section are

H"+e =H+ 13.6eV,
Het" + e~ =He™ + 54.4 eV,
Het™ +2e =He+ 79.0 eV

Thus one finds
Het +e =He+ 24.6 eV,

An obvious note is that adding electrons one gains less energy if there are already other
electrons. The energy one gains in adding the last electron is the ionization energy. In
many cases one can add additional electrons and gain some energy, which is called the
electron affinity E.g. for Chlorine

Cl"+e =Cl+ 13.0 eV,
Cl+e =ClI” + 3.6eV.

The binding energy of Chlorine is 13.0 eV, the electron affinity is 3.6 eV. Electron affinities
play a role in molecular binding.
An interesting example is actually the hydrogen atom, which also has a positive elec-
tron affinity,
H+e =H + 0.76 eV.

The H atom, however, also illustrates that adding a second electron completely changes
the structure of the wave functions. Adding one electron to H" or Het™t one has simple
hydrogen-like wave functions. But adding the second electron one has to account for the
presence of the other electron as illustrated for He using the variational approach. In that
case a product wave function still worked fine. If one tries for a second electron in H™
such a product wave function one does not find a positive electron affinity. In order to
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find a positive electron affinity for the H-atom (for which an equivalent statement is that
the H™-ion has a binding energy of 0.056 R, = 0.76 eV) one can use e.g. a trial function
of the form

Y =C [e—(a1r1+a2r2)/ao + 6—(a1r2+azr1)/ao] ' (1.93)

The form is suggestive for two different orbits with fall-off parameters oy and ay, but as
electrons are indistinguishable one must (anti)-symmetrize (depending on spin) the two
terms. With a plus sign one has wave functions without nodes giving the lowest energy.

Central field approximation

For many-electron atoms a good starting point is trying to approximate the average effect
of the electron-electron repulsion into an effective central potential. The effective charge
felt by an electron is expected to behave like

A
Z ef
r
1 - =31
Ze =9 7
z

The precise behavior of Z.g(r) can e.g. be obtained from the electron densities in a self-
consistent matter. Thus, one can approximate the many-electron hamiltonian by

z 2 2
h Ze(1) €
H(ry,...,72:p4,. .., DI e el IO 1.94
(r1 Tz;P1 Pz) i:1< 2 i 47Teon-)+ (1.94)

The advantage of this procedure is that part of the repulsion is taken into account retaining

a central interaction and a separable hamiltonian. This will modify the spectrum, lifting

the degeneracy between different ¢-values for given n. In general the higher ¢ values will

because of the angular momentum contribution % £(¢ 4+ 1)/2mr? in the effective radial

potential will feel a smaller charge and hence become less bound.

L E Th .

e (schematic) spectrum for many-

electron atoms. A possible parametriza-

(10x) 3 tion of the levels taking into account the
screening effect is

(20 5, — %3

Ene = =%,
¢ (n—6,)?

(25

where J, is referred to as quantum de-
fect, and one expects d, — 0 for large ¢-
(2%) values. This will work particularly well
1s for atoms with one electron outside a
=0 =1 |=2 closed shell.
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Electron configurations for atoms

In the central field approximation, the hamiltonian separates for the different electrons and
the solution is an antisymmetrized product of single electron states (Slater determinant),
where one needs to keep in mind the spin degeneracy (2 for each level). Operators
compatible with the hamiltonian are £;, s; but also L = >, ¢; and § = Y ;s;. Also
the total angular momentum J = L + S is compatible with H as is the parity operator.
Hence one has many good quantum numbers. At this level of approximation one can label
the states by giving the various (nf) levels and their multiplicities, e.g. for the ground
state of helium (1s)?, for Carbon (1s)?(25)%(2p)?, etc. Combining the angular momenta
and spins to states with definite L, S and J is possible, but not yet relevant, since all
multiplets that can be constructed (see next section) are at this level degenerate. This
remains true if one refines the picture by using an effective central charge Zs(r). The
only effect of the latter is the splitting of different /-values corresponding to the same
principal quantum number n.

The structure of the periodic table is summarized in the following table of levels given
in order of increasing energy

n summed #
1 | 2 | 3 | 4 | 5 | 6 | 7 of levels remarks

()" | | | | | | [2(He) | |
(25)? 4
(2p)° 10 (Ne)
(3s)? 12
(3p)° 18 (Ar)
(45)? 20
(3d)1° 1y 30 - Fe-group
4p 36 (Kr
(55)2 38
(4d)1° 48 Pd-group
(5p)° 54 (Xe)
65)? 56
(4f)™ 70 Lanthaniden
(5d)™ 80 Pt-group
(6p)° 86 (Rn)
(75)* || 88
(5f)t 102 Actiniden
(6d)'° -~ 112 o Pt-group
)8 | 118 (7

The noble gases correspond with large energy gaps between the filled shell and the next
available one. Characteristics of these noble gases are a high ionization energy and a small
affinity to other elements, e.g. Eiopization = 24.6 €V (He), 21.6 eV (Ne) and 15.8 eV (Ar).
The level scheme in the table can also be used to establish the excited states. We already
have discussed this for He. The ground state is a (1s)? configurations, excited states are
e.g. (1s)(nf) configurations with (nf) # (1s). Similarly one has for e.g. oxygen a ground
state (1s)2(25)%(2p)* and excited states in the (1s)%(25)%(2p)®(nf) configuration.
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Atomic multiplets

In a more realistic atom the ee-interaction term (or what remains after taken into ac-
count an effective charge) must also be considered. It breaks rotational invariance in
the hamiltonian for the electron coordinate r;, thus £; is no longer compatible with the
hamiltonian. We note that L is still compatible with the hamiltonian. Since there is no
spin-dependence spin operators s; and also S are compatible with the hamiltonian and
corresponding quantum numbers still can be used.

To illustrate how one easily finds the allowed L and S values given an electron con-
figuration, we consider the ground state configuration of Carbon, (1s)?(2s)?(2p)?. The
allowed states in a shell can be represented as a number of boxes, e.g. an s-shell as two
boxes, a p-shell as six boxes,

med om0 | med me| 1] 0| 41]
+1/2 +1/2
—1/2 —1/2

etc. Putting N electrons in these boxes with at most one electron per box (Pauli principle)
one has 6!/N!(6 — N)! possibilities, e.g. for a filled only one possibility. Obviously then
all magnetic quantum numbers combine to zero, M, = Mg = 0 and one also has for the
total L and S quantum numbers L = S = 0. Hence filled shells can be disregarded for
finding total (L, S) values.

As a consequence the specta of atoms with one electron outside a closed shell (Li, Na,
K, Rb, Cs, Fr) resemble the spectrum of hydrogen, e.g. the configurations for sodium (Na)
are (nf) with n > 3. The groundstate for Na is (3s)2S; 9, the first excited states are the
(3p)2P1 /2 and (3p)?P;); levels. The electric dipole transition 2P —? S is the well-known
yellow Na-line in the visible spectrum, which by the fine-structure (see below) is split into
two lines corresponding to the transitions Py —? S1/o and ?P;js =2 Sj/o. For atoms
with two electrons outside a closed shell (Be, Mg, Ca, Sr, Ba, Ra) the spectra resemble
that of helium.

For a particular number of electrons it is easy to look at the number of possibilities
to construct particular My and Mg values. This is denoted in a Slater diagram

Mgl Mp|[-2]|-1] 0 |+1]+2]

+1 0 1 1 1 0
0 1 2 3 2 1
-1 0 1 1 1 0

It is easy to disentangle this into

0(0]0(0]0 0/1|11]1]0 0(010]0|0
11171111 n 0j1|11}]1]0 i 0(011]0|0
0(0]0(0]0 0/1|11]1]0 0(010]0|0
(L,S)=(2,0) (L,S)=(1,1) (L,S)=1(0,0)

Thus for the Carbon one finds in the groundstate configurations the multiplets
'D *p 'S

Also for configurations involving more shells that are not completely filled, it is straight-
forward to find the states in an Mg — My diagram. For the ordering in the spectrum a
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number of phenomenological rules have been formulated, the Hund rules. In particular
for the groundstate configuration, one has that the terms with highest S-values (highest
multiplicity) and then highest L-values have the lowest energy, i.e.

E(GP) < E(*D) < E(*9).

These phenomenological rules also work well for the lowest excited configurations.

The fine structure of atoms

For not too heavy atoms, the fine structure turns out to be described well by a spin-orbit
interaction of the form
Hy, = A(L,S)L- S, (1.95)

with a strenght A depending on the multiplet, coming among others from the radial
dependence of the basic interaction. The spin-orbit interaction splits states with different
J-values, leading to 2°*1L; multiplets and a magnitude for the splitting being given by

AE@&M@:%A#UU+1y<ML+D—S@+U] (1.96)

An example of the splitting of the three terms for an (np)? configuration is given below.

25+1 J J (j.])
s o
//I \‘\\ 0
! L (32,302)
II// l ——'2 // \

; D 2 -7 \
(p) 2 /.- . (np) 2
. 2 (3R -

2 ///’ /// ///
3P 1 /
So 1 ’/,’ ;
T—
.0 (1212

Note that the average (beware of degeneracy) of a multiplet gives the energy of the
multiplet without the spin-orbit interaction. In cases of shells being less than half filled,
the lowest J-value is generally lowest (A > 0), for shells being more than half filled, the
highest J-value is generally lowest (A < 0).

The pattern of levels can in principle be obtained from atomic spectra. The use of
magnetic fields is helpful to determine the degeneracy of the levels, and hence the J-values
of levels. But already the spin-orbit splittings contains interesting patterns, such as

E(QS—HLJ) _ E(QS—I—ILJ_l) B J
E(2SH1L;_1) — E(25t1L;_,) T J=1

(1.97)
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e.g. for

E(R) - E(P)

EGP) - E(R)’

one expects r = 2 if LS-coupling describes the fine structure. For carbon the actual ratio
is 1.65, for silicium (Si) it is 1.89, but for a heavy atom as lead (Pb) the result is just 0.36,
indicating a different type of fine structure. A different scheme is the jj-scheme in which
first the orbital angular momenta and spins of the electrons are coupled, which in turn
are combined into J-values, illustrated in the figure for the (np)? configuration. Note that
coupling two identical j-values of the electrons, one needs to account for the symmetry of
the wave function. The wave function for the maximal J = 2 j is symmetric, for the next
lower J it is antisymmetric, then again symmetric, etc. This explains the J-values in the
jj-coupling scheme. In the final result the same J-values must appear, but the spectrum
in general is different.

T =

1.6 Magnetic effects in atoms and the electron spin

Interaction of orbital angular momentum with magnetic field

In a magnetic field an additional interaction is added to the hamiltonian,

R’ Ze?
H=-"v2_ Viasg: 1.98
. 2m 4dmeq T "+ Vmag ( )
Ho
where Vin,s = —p- B. Neglecting spin, the magnetic moment of a particle in orbit is given
by
e
=—g—£ 1.99
He=—0t5 (1.99)

with g = 1. What are the eigenfunctions and eigenvalues (energies) of this new hamilto-
nian. For this it is useful to find as many as possible commuting operators. Commuting
operators are H, €%, 0, (and, although overcomplete, the parity operator). However, the
term .

Vmag = % t-B )

implies that one only can have £, as an operator compatible with H if the z-axis is chosen
along B, i.e. B = B z. In that case it is easy to convince oneself that the eigenfunctions
are still the hydrogen wave functions, while the energies are shifted over an amount

B
ABnm, = (nﬂmg\;— C.|nlmyg) = my upB, (1.100)
m

where B 5
(&
= _— =—_ec— ~58x10°eV/T 1.101
s 2m 2€cmc % ev/ ( )

is the Bohr magneton.
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Interaction of the electron spin with a magnetic field

For a proper description of an electron, one needs to specify in addition to 9 (r,t) a spin
wave function y, i.e. an electron is specified by

p(r, 1) x(1).

In quantum mechanics we have learned to specify spin states with the quantum numbers
s and my, corresponding to eigenvalues of s? (eigenvalue i*s(s + 1)) and s, (eigenvalue
himg). The possible values for s are 0,1/2,1, ... with for given s the eigenvalue m; running
from s to —s in steps of one, i.e. there are 2s 4+ 1 spin states. For a spin 1/2 particle
such as the electron, the spin can take only two values, often referred to as spin-up or
spin-down. Thus one sees notations as

G =xa=nzyz=1n= o). (1.102)
Wt =x=nz-yn=1n=[1). (1.109)

Since the Hilbert space of allowed wave functions contains all linear combinations one
immediately sees that after the choice of the spin-up and spin-down basis-states as two-
component vectors , the wave function can be written as

(D).

With this representation, the spin operators can be given by matrices, s = % h o where o
are the three Pauli matrices

01 0 —2 1 0
om—[lo], Oy_[z' 0], O'Z—[O_l]. (1.104)

Just as the orbital angular momentum, the spin gives in a magnetic field rise to an
interaction term in the hamiltonian.

Vinag = —H, - B, (1.105)

with 5
By = —9s 2i s=-g, —a. (1.106)

m m
The g-factor for the spin of the electron is g, & 2. Actually the deviation from 2 is due to
subtle but calculable effects in quantum electrodynamics, g. —2 = a/7+. .. ~ 0.00232. If
the interaction of the spin with the magnetic field is the only interaction (e.g. for s-waves),
the result of the interaction term is a simple shift in the energies for the states, that now

include also spin quantum numbers.

The Zeeman effect

In general a 2°*1[ level in a magnetic field is split by an interaction term

Vmag = —K- B; (1107)
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where p = —ug(g9r L + gs S), resulting in a number of levels with the splitting given by

In normal magnetic fields (say smaller or of the order of 1 T), the splittings are only
fractions of an eV and there are other effects causing different splitting patterns, such as
the L - S spin-orbit interaction. But for very large magnetic fields one does see the above
normal Zeeman splitting pattern.

M, 2Mq
— 1 1
0 1
2P ——{:—:——— 1 F1
0 -1
-1 -1 Zeeman splitting of levels in a
magnetic field (no spin-orbit).
Also indicated are the transitions,
separated into AM; = 0 (-
) 0 1 transitions) and AM; = £1 (o-
S 0 1 transitions).
-2 I N I
no |

Finally we note that the magnetic effects discussed here are those in an external
magnetic field. This defines a preferential direction in space and leads to dependence on
eigenvalues of the (z-)component of the angular momentum operators. This is also found
back in the names magnetic quantum numbers for my, my, etc.

Spin-orbit interaction and magnetic fields

Including the spin-orbit interaction is important to describe the fine structure of atomic
spectra and in general turns out to be considerably larger than the magnetically induced
splittings. In that case one cannot simply use the results for the normal Zeeman effect
when spin plays a role. So consider the situation that one has an interaction term in the

atom of the form
Hy=AL-S—pu-B, (1.109)

with p = pp(gL + 9sS)/h = pp (L 4+ 2S)/h. We have already seen what happens in
the situations A = 0 and B = |B| = 0. One has

A=0: eigenstates |(...)LSMMs),
AE(LSMpMs) = ugB(Mp, + 2Msy),

B=0: eigenstates |[(...)LSJM),
AE(LSJM) = %AhQ [J(J+1)— L(L+1) - S(S+1)].

126



The splitting pattern for A = 0 has already been given, for B = 0 it splits the 25t1L
multiplet into the different 2°*!L; multiplets, for the 2P —2 S transition indicated as the
first splitting in the figure below.

3/JZ +3'\’/|/2
> 32 412 The spin-orbit splitting
2p £ o ¥2-12 leading to the 25*1L;
5 ig :ig multiplets for the 2P and
Pyz T 12 -12 2S levels and the consec-
utive splitting in a mag-
netic field for the case of
- U2 +1/2 a small magnetic field.
s gy, 12 12

1/2
When one switches on the magnetic field, one deals with an interaction term for which
neither |[LSMMs), nor |[LSJM) are proper states (check compatibility of the relevant
operators!). If the magnetic field is small the states will be in first order given by |LSJM)
and one can calculate the energy shift via

AFBmag = B ((...)LSIM|L,+2S,|(...)LSIM) = ugB{(...)LSIM|J,+S,|(...)LSTM).

(1.110)
The part with which we need to be careful is the expectation value of S,, Evaluating
it between states with different M-values belonging to the same J gives zero, because if
two M values involve the same Mg, the M;’s must be different (remember that in the
coupling M = M;, + Ms). Thus we just need

J(J+1)+S(S+1) - L(L+1)

LSJM|S,|LSIM) = M
(LSIM|S|LSTM) 2J(J +1)

(1.111)

which follows from a subtle relation involving S and J operators (see e.g. the book of
Mandl, Ch. 6), J*J, + J,J> =2J, (J - S) leading to

J(J+1)+8(S+1) — L(L + 1)
2J(J +1)

~~

9J

ABpa = |1+

~

M pupB, (1.112)

where ¢ is called the Landé factor. This splitting is also indicated in the figure. Note
that the procedure only works for small B-values. For large B-values (Paschen-Back limit)
the assumption of states being approximately given by |LSJM) is not valid and one gets
the previously discussed normal Zeeman splitting.

1.7 The quantum structure of molecules

The Born-Oppenheimer approximation

We start with the (nonrelativistic) hamiltonian for a system of nuclei and electrons,
h? n?
H=—-—Y V;-Y —V,+V(Ra,m). 1.113
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The summation over i refers to the electrons, that over A to the nuclei. The potential
energy in molecules is due to the electromagnetic interactions between the charges of the
electrons and nuclei. The most important part of it is given by the Coulomb parts,

Zy€? ZaZp e ¢’
V(Ra;mi) = =) 7——— +
(Ra,7:) ;i Ameg |7 a4 é Amey | Rap| 47T€0 |"°za|

(1.114)

The first term is the attraction between the electrons and the nuclei with r;4 = r;, — R4.
The other two terms are the repulsion between the positively charged nuclei with R g =
R, — Rp and the negatively charged electrons with r;; = r; — r;.

The basic assumption of the Born-Oppenheimer approximation is that the wave func-
tion of the molecular system is separable into a product of a nuclear wave function W,
and an electronic wave function v,

\Ilmol(RAa 'ri) = ‘Ijnuc(RA) wel(ri; RA) (1115)

It is assumed that the electronic wave function can be calculated for a particular nuclear
configuration {R4} which enters the electronic wave function in a parametric way. To
see how this is implemented insert this ansatz in the Schrédinger equation. One obtains
from the kinetic terms

ViU (Ra) Ya(ri; Ra) = Unue(Ra) Vitha(rs; Ra),

ViUnie(Ra) Ya(rii Ra) = [V3Unc(Ra)| va(ri; Ra)
+2[VaVnuc(RA)] [V ata(ri; Ra)]
+ Yy (Ra) [Vzﬂ/Jel(Tz'; RA)] :

The Born-Oppenheimer approximation assumes that V 41 can be neglected. The naive
justification comes from the fact that the electrons are several thousand times lighter than
the nuclei and will adapt their positions instantaneously to the potential field of the nuclei.
Indications for this come from the relations £(R,) = (—i/h)[Ra, H] = (P4)/M4 and
4 (r;) = (—i/h)[r;, H| = (p;)/m. Of course we can and should later check the consistency
of this ansatz. The Born-Oppenheimer approximation, indeed, is least appropriate for the
light Hy molecule.

With the Born-Oppenheimer ansatz, it is easy to see that the Schrodinger equation

separates into

R? Z 4 e? e?
VY A Y (i Ra) = Ua(Ra) Ya(r:), (1.116
[ Qm; %47reo|r,4i| ;47reo|rij|]¢1( 4) ((Ba) Ya(r), ( )
h2 ZAZBe
V2 + V(R 4 Ug(RA) | Wpne(RA) = E Uy (R).
S Vi VR r) ¢ 3 T ()| V() = B V()

(1.117)

These constitute two separate problems, namely the first one to calculate the electronic
levels given a nuclear configuration. This is the analogy of the problem for atoms but now
in a multi-centered field. Note that we deal with an (infinite) series of energy surfaces,
consisting of a groundstate surface and excited surfaces, depending on the configuration
of all electrons. The word surface by itself stands for the degrees of freedom present in
the nuclear coordinates {R4}. Given a particular energy surface Ug(R4) one solves for
the nuclear wave function.
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1.8 Exercises

Exercise 1.1

For the Hydrogen atom we have seen that for the radial wave functions u,,(r) one has to
look for eigenvalues of

R d? BRPA(L+1) Zeé?

= _
2m dr? 2m r? AT ey’

which can be rewritten as

d?  e+1) 2
H’I‘:EO —d—p2+ p2 p

where p = r/ry (choice of 2 in numerator of 2/p is convention) and

_ Z%e*m - _47reoh2
- 32m2 e B T Zerm”

Ey

Construct in a similar way the characteristic energy and length scales for the case of the
harmonic oscillator,

B2 42 REe(+1) 1
:———+ﬂ+_mw2r2

" 2m dr? 2mr? 2

and a linear potential

R & +h2£(£+1)+TT
" om dr? 2m r? 0

Exercise 1.2

(a) Apply Bohr quantization to a gravitationally bound system. Estimate the quantum
number for the orbit of the Earth around the Sun.

(b) Apply Bohr quantization to the harmonic oscillator and the linear potential and
determine FE,, and 7.

Exercise 1.3

Evaluate the z-component of the dipole transition amplitude for the Balmer transition
3p — 2s. Using Mathematica to evaluate the integral, you can also try the x £ iy-
components and vary the m-quantum numbers to check the selection rules.

Exercise 1.4

Consider the Lyman-a transition in atomic hydrogen (transition between n = 2 and
n = 1). What is the isotope shift for this transition going from normal hydrogen to
deuterium, having an additional neutron in the nucleus. Calculate also the transition for
positronium, a bound state of electron and positron.
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Exercise 1.5

Consider a two-level system with energy levels Fy and E; and populations ny(t) and
n1(t), starting with n,(0) = N and n2(0) = 0. Solve this equation using an algebraic
manipulation program.

(a) Show that for short times, there is a steady growth of population in the excited
state.

(b) Look at the behavior for t — oo.

(c) Show that there is a maximum for ny for all times and all intensities w,, even for
u, — 00. Give some plots for different values of A/Bu,.

Exercise 1.6

Apply the variational principle to find a suitable wave function for H™. Try the product
wave function that has been used for He. What do you find for the electron affinity of H
in that case. Then try the two-orbit form proposed in this chapter and show that it at
least leads to a positive electron affinity.

Exercise 1.7

(a) Determine the multiplets, their spectroscopic terms and their energy ordering for
all (np)® configurations.

(b) Similar for (np)(n'p) with n # n'. Compare the levels with those for carbon.

Exercise 1.8

(a) Construct the possible spectroscopic terms of a barium atom in a (6p)(5d) state in
the LS-coupling scheme. Include spin-orbit interaction in a second step. Check that
there are (as expected) 60 states, which are partly degenerate. Use the Hund rules
to order the states.

(b) Give the corresponding construction of allowed J-values in the jj-coupling scheme.

Exercise 1.9

(a) Use for the ?P states the basis states |L, S; My, Ms) and write down the spin-orbit
hamiltonian Hy, = AL - S as a matrix. Use for this the explicit expression

A
HSO = 5 (2 LZSZ + L+S, + L,S+) .
Determine the eigenvalues and eigenstates. The latter are of course precisely the
|L,S;J, M) states.

(b) Do the same for the hamiltonian in an external magnetic field, Hy,y = A L-S—u- B,
using the explicit form
A

Hint = 5 (2 LzSz + L+S_ + L_S_|_) — UB BO (Lz +2 Sz) s
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Exercise 1.10

In the section on the Zeeman effect, the splitting of spectral lines 2P — 2S (including
division into o- and w-transitions) is given. This is of course also the splitting pattern in
the the Paschen-Back limit of the general case (including LS-splitting). Give the splitting
of the 2P — 28§ spectral lines, i.e. the possible transitions, for the small B-field limit in
the general case.

1.9 Reader - Atoms

section in notes | section(s) in Brehm and Mullin
1.1 3.1-39

1.2 7.1-74

1.3 5.8, 7.5,

1.4 8.9, 8.10, 8.12

1.5 9.1-93,95-99

1.6 8.1-8.5,8.11

1.7 10

Introduction

1. What is wrong with the Thomson model of the atom?

2. What is the structure of the spectrum of hydrogen and what does it teach us on the
energy spectrum of hydrogen?

3. Application of Bohr quantization to the hydrogen atom and other potentials.

The Schrodinger equation for the hydrogen atom

1. The different steps in getting to the simple radial Schrédinger equation for the
hydrogen atom: reduction to center of mass (use of reduced electron mass); looking
for stationary states; separating radial and angular parts for a central potential;
making equations dimensionless.

2. Discuss the structure of the spectrum for hydrogen, levels, quantum numbers, de-
generacy.

3. Look at the typical sizes of orbits, e.g. by making a table of (r/ag), \/{(r/a¢)?), etc.

Radiative transitions

1. Discuss the time dependence of the occupation number of two levels in a heat bath
with energy density u,. What are the Einstein coefficients. What is essential for a
laser (principle) and how can it be achieved (principle).

2. The electric dipole transition for photons with polarization € is described with via
the dipole operator. Its matrix elements determine the Einstein coefficients.
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. The Einstein coeflicients for spontaneous emission determine the lifetime of an ex-

cited state. What is the order of magnitude of this lifetime.

Discuss the various selection rules for electric dipole transitions and quadrupole
transitions.

Refinements in the spectrum of hydrogen

1.

2.

Give the steps that are necessary to treat the spin-orbit interaction in hydrogen.
Explain why it is necessary to couple £ and s to total angular momentum j.

Discuss the hyperfine splitting for the groundstate of hydrogen. What are the pos-
sible total angular momentum values? Is this truely the total angular momentum?

Many electron atoms

1.

10.

11.

12.

13.

14.

Symmetry of wave functions under permutations. Do not confuse permutation sym-
metry with space inversion (parity)!

Bosons and fermions have symmetric and antisymmetric wave functions, respec-
tively.

. The Pauli exclusion principle.

Discuss in detail the quantum numbers of ground state and excited state configura-
tions in helium, orbital angular momentum, spin multiplicities, parity, total angular
momentum, degeneracy, permutation symmetry of the states.

Calculate the effect of the electron repulsion in helium using perturbation theory.

. Argue which spin states have lowest energy in helium. Why is for ortho-helium the

groundstate configuration absent?
Give radiative (electric dipole) transitions between levels in the spectrum.

Use the variational principle to get an improved wave function for the helium ground
state configuration.

. What are ionization energies and electron affinities.

Hydrogen has a (small) positive electron affinity, i.e. H™ is bound.

What is the centrla field approximation. Argue within this approximation that
higher /-values have higher energies because they have a smaller Z.g.

Discuss the structure of the periodic table. What are noble gases?

Construct for given groundstate or excited state configurations the allowed multi-
plets and indicate the electric dipole transitions. Give the energy ordering using the
Hund rules.

Give te fine structure of a multiplet in the LS-scheme and/or the jj-scheme.
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Magnetic effects in atoms

1. Discuss the effects of spin in an external magnetic field.
2. Discuss the effects of orbital angular momentum in an external field.

3. Discuss the structure of energy levels in a realistic atom, i.e. including the fine
structure, in an external magnetic field and discuss the various limits (Zeeman
effect and Paschen-Back limit; small B-field, what is actually small?). What is the
Landé factor.

4. Discuss the splitting of lines in the spectrum in the limiting cases (small and large
B-field) for a particular multiplet.

The quantum structure of molecules
1.
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Chapter 2

Nuclei and Elementary Particles

PART 1
THE STRUCTURE OF MATTER

2.1 Introduction

In these lectures we study matter. On the one hand this includes unraveling matter for
its constituents, and the search for the forces between these constituents. But it also
includes understanding the beauty and principles underlying the complexity. Often these
are symmetry principles. Depending on the domains of distances, velocities and energies
one is considering one needs to employ quantum mechanics and/or special relativity.

In quantum mechanics a special role is played by Planck’s constant h, usually given
divided by 2,

h = h/2r = 1.054 571 596 (82) x 107** J s
= 6.582 118 89 (26) x 1072 MeV s. (2.1)

We already have choosen here two different, often used units for energy, the Joule (J) and
the electronvolt (eV). The first is the formal MKS unit to be used (1 J = 1 kgm?s™2), but
in many applications in condensed matter, atomic and molecular physics and subatomic
physics one uses the eV, or powers thereof!. One eV is the energy obtained or needed
when an elementary charge,

e =1.602 176 462 (63) x 10~"° C, (2.2)

is displaced over a potential difference of 1 V. Quantum effects become unimportant in
the limit that the product of energy X time or equivalently momentum X distance or
angular momentum is much larger than 4. More precisely formulated, when the action
A > h. Then one is in the classical domain.

In special relativity a special role is played by the velocity of light c,

c = 299 792 458 m s~ (2.3)

In the limit that v < ¢ one reaches the non-relativistic domain. Schematically one has

1k = kilo = 103; M = mega = 10%; G = giga = 10%; T = tera = 10'%; m = milli = 10~3; x4 = micro
=107% n = nano = 1079, p = pico = 1072, f = femto = 10715,
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| Classical Mechanics| A>>h

v e

| Special Relativity|

v~ C

‘Quantum Mechanics‘ A~h ‘Quantum Field Theory‘

2.2 Units

The choice of an appropriate set of units is often important, because physical sizes and
magnitudes only acquire a meaning when they are considered in relation to each other.
This is true specifically for the domain of atomic and molecular physics, nuclear physics
and high energy physics, where the typical numbers are difficult to conceive on a macro-
scopic scale. They are governed by a few fundamental units and constants, which have
been discussed in the previous section, namely A and c. In fact one can work with less
units by making use of fundamental constants such as & and c. For instance, the quantity
¢ is nowadays used to define the meter. We could as well have set ¢ = 1. This would
mean that one of the two units, meter or second, is eliminated, e.g. because /¢ has the
dimension of time, one has 1 m = 0.33 x 107® s or eliminating the second one would use
that ct has dimension of length and hence 1 s = 3 x 108 m. Using both % and ¢, all length,
time and energy or mass units then can be expressed in one unit and powers thereof, for
which one can use energy, as shown in the next table. The power of ' determines what
is referred to as the canonical dimension d of the quantity.

quantity constructed quantity | dimension d
time ¢ t/h (energy)~! -1
length ! 1/ (hc) (energy)™t | -1
momentum p pc (energy)! 1
angular momentum /¢ 2/h (energy)® 0
energy E E (energy)! 1
mass m mc? (energy)! 1
area A A/(hc)? (energy) 2| -2
force F Fhe (energy)? 2
Gn Gn/(hc®) (energy) 2 -2
velocity v v/c (energy)? 0

The most appropriate energy unit depends on the domain of applications, e.g. the eV for
atomic physics the MeV or GeV for nuclear physics and the GeV or TeV for high energy
physics. To convert to other units of length or time we use appropriate combinations of
h and ¢, e.g. for lengths

he = 0.197 326 960 2 (77) GeV fm (2.4)
This quantity can of course be used to eliminate the meter if one puts A = ¢ =1,
1fm = 107 m ~ 5.068 GeV~'. (2.5)

Remembering only two numbers, e.g. ¢~ 3 x 10® m/s and fic ~ 200 MeV fm =~ 200 eV
nm, it is possible to do the conversions. Often, this can also be used to give reasonable
orders of magnitudes. Depending on the specific situation, of course masses come in
that one needs to know or look up. Two important masses are that of the electron
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mec® = 0.510988 902 (21) MeV and that of the proton m,c* ~ 0.938271 998 (38) GeV.
Furthermore one encounters the strength of the various interactions. In some cases like the
electromagnetic and strong interactions, these can be written as dimensionless quantities,
e.g. for electromagnetism the fine structure constant

62

= = 1/137.035999 76 (50). 2.6
= e Y (50) (2.6)

For weak interactions and gravity one has quantities with a dimension, e.g. for gravity

Newton’s constant,
G
h—’§ = 6.707 (10) x 10739 GeV 2. (2.7)
c
Having many particles, the concept of temperature becomes relevant. A relation with
energy is established via the average energy of a particle being of the order of k7", with

the Boltzmann constant given by

k =1.3806503(24) x 10 % J/K = 8.617342(15) x 10" ® eV /K. (2.8)

2.3 The constituents of matter

Y Y Y VYV YYY Y Y YV VY

¢G40 - 20 006 006
CE+04++4+0+0+4+04+4+
33833 3ot ot o8
Q O+ 44000+ ¢4+ MATTER
@
ELECTRON
ATOM
10 *°
ATOMIC NUCLEUS " @8~ NEUTRINO
107 \
NUCLEON C\
proton/neutron %/
10 °m //
QUARK
up/down
<10 ®m The structure of matter.

The basic units of the matter around us are the atoms. They are found as the building
blocks of molecules or solids, bound in a variety of ways discussed in the sections on
molecular physics and condensed matter physics. The atoms are composed of the atomic
nucleus with a positive charge +Ze, which is a multiple of the elementary charge e. The
atomic number Z characterizes the atom, Z = 1 for Hydrogen (H), Z = 2 for Helium
(He), etc. In the atom the charge of the nucleus is neutralized by Z electrons, bound to
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the nucleus via the electromagnetic force. The atoms can be organized in the Periodic
Table. Its structure is determined by the consecutive filling of the energetically lowest
available electron orbits and the Pauli exclusion principle, which prohibits for particles
with half-integer spin such as the electron (spin 1/2, i.e. two spin states) that identical
particles occupy the same orbit.

Typical order of energy levels available for consec-
E #levels utive filling of electronic orbits in an atom. The
{-degeneracy of the levels in Hydrogen is lifted be-

3d 10 cause of the electrons screening the nuclear charge,

=8 ..o %g S to be discussed in more detail later. The order de-
=2 2p 6 termines the structure of the period table of the
****** 25 2 elements. For instance the electronic structure of

Carbon (C) with Z = 12 is (1s)?(2s)? (2p)?, the
electronic structure of iron (Fe) with Z = 26 is
(15)% (2s)2 (2p)® (35)2 (3p)® (45)? (3d)®. The order rel-

n=1
””” Is 2 evant for the periodic table is: 1s, 2s, 2p, 3s, 3p, [4s,
ﬁl 3d], 4p, [5s, 4d], 5p, [6s, 4f, 5d], 6p, [7s, 5f, 6d|. Levels
: enclosed with brackets have very similar energies.
Periodic Table >

3a da 5a Ba Ta |He
5[ &[ 7] B[ 9] 10

B [C [N |0 |F |[Ne
8 13| 14| 18] 18] 17[ 18

5b Bb b T 1b 2b |Al |SI |P |8 |CI |Ar
23] 24| 25| 26] 27| 28] =29] 30| 31| 32| 33| 34| 35[ 36
YV |Cr |[Mn |Fe |Co |Ni |Cu |Zn |Ga |Ge |As |Se |Br [Kr
41| az| 43| 44| 45| 46| 47| as| 49| s0f 51| 52| 53] 54

Nb |Mo |Tec |Ru |Rh |Pd |Ag |Cd |In |Sh |Sb |Te || Xe
73| 74| 75| 76| 77| 78] 79| so| 81| 82| &3] 84| 5] oo
Ta |W |Re |Os |[Ir |Pt |Au |Hg |TI [Pk |Bi |Pe |At |Rn
105] 106

Ha | Alkali Metal Metal Rare Earth
| Alkali Earth Man-hetal O Moble Gas
Trans. Met. Halogen

; Lt 59 60 61 62 63 64 65 [i133 LiT [it!] 69 i) 71
Lanthanides |ce |Pr |Nd |[Pm [Sm |Eu |Gd |Tb |Dy |Ho |Er |Tm|¥b [Lu
L. an a1 a2 a3 94 95 96 a7 o8 99| 100f 101| 102| 103
Actinides [Th |pa |U [Np [Pu |Am |cm|BK |cf |Es [Fm |Md |No [Lr

The mass of an atom is in essence determined by the atomic nucleus, consisting of Z
protons, each with a positive charge +e and N neutrons being neutral. Protons and
neutrons (together called nucleons) have similar masses,
m, = 1.672621 58(13) x 107*" kg = 938.271 998(38) MeV /c?, (2.9)
m, = 1.6749272(14) x 10727 kg = 939.565 33(40) MeV /c2. (2.10)
The size of the atomic nucleus is tiny, of the order of 10 fm = 10~!* m, as compared to

the size of the atom, which is of the order of 1 A= 0.1 nm = 10~'° m. The atomic size is
determined by the configuration of the light electrons,

m. = 9.109 381 88(72) x 103! kg = 0.510998 902(21) MeV /c? (2.11)

(about 1836 times smaller than the proton), orbiting the nucleus. Electrons can be freed
from an atom or additional electrons can be bound, leaving positive or negative zons,
leading to ionic bounds. Electrons can also be shared by atoms in covalent bounds.
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For the mass of the atom one has introduced as standard the atomic mass unit (u).
It is defined as 1/12 of the mass of the '2C atom,

1 u=1.66053873(13) x 107*" kg = 931.494 013(37) MeV /c?. (2.12)
Via this unit one also defines Avogadro’s number, N,
Naw = (1 gr)/(1 u) = 6.02214199(47) x 10%. (2.13)

This is typically the number of atoms in a macroscopic sample. Without any mutual
interactions, this would lead for the electrons typically to N,,-fold degenerate levels as
compared to a single atom. In solids, the lifting of this degeneracy because of the e-e
interactions and the interactions of electrons with neigboring atoms leads to the band
structure. In particular in regularly layered structures such as cristals a wonderful world
of phenomena occurs of which superconductivity is one of the most well-known ones.
Depending on the occupation of these bands, the band gaps, the presence of impurities
in the material and the temperature, completely different behavior emerges, e.g. in the
conductivity (conductors, semiconductors and isolators).

simple cubic body centered cubic face centered cubic

The cubic lattices are fairly common lattices. Shown are the simple cubic (sc),
body-centered cubic (bec; in addition 1 atom in the middle of each cube) and
face-center cubic (fcc; in the middle of each side also an atom) structures. It
turns out that fcc has the most dense packing, but density is not the only
factor in determining the lattice structure of a material. Filling the sides of a
simple cubic lattices with atoms of a different kind, resembles an fcc structure,
but is of course just a simple cubic structure, because the lattice structure is
determined by translations leaving the structure invariant.

The richness of phenomena ranging from plasmas (a hot but usually neutral collection
of free atomic nuclei and electrons) in stars or fusion reactors, the cristalline structure
of matter extending to macroscopic sizes, superconductivity, macromolecules like DNA
and all interactions with light are described with electromagnetic interactions. For this
one has a well-developed theoretical framework. Quantum electrodynamics (QED) is a
fully relativistic quantummechanical description for the interactions between charges via
exchange of photons (the light quanta). QED is the basis for obtaining the full (quantum-
mechanical) Hamiltonian used in the Schrédinger equation to calculate the wave functions
of the electrons. Several techniques, ranging from smart approximations to extensive com-
puter calculations are employed to obtain an effective inter-atomic potential that is used
in molecular physics and chemistry. QED also underlies the Maxwell equations. These
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can be used to describe classically the interactions of charges with electric (E) and mag-
netic (B) fields or at a semiclassical level the interactions of charges/atoms with light
(quantum optics).

As mentioned already, atoms are characterized by the atomic number Z corresponding
to the number of protons in the nucleus. Often there is more than one possibility for the
number of neutrons (N). Nuclei with different number of neutrons for a given Z are
called different isotopes for the same element. Nuclei are denoted by the atomic symbol
(H, He, etc.) and in order to distinguish the isotopes one adds as a left superscript the
total number of nucleons A = Z + N. One has for Hydrogen 'H = p, 2H = pn (nucleus is
called deuteron, atom is called deuterium) and 3H = pnn (nucleus is called triton, atom
is called tritium). The isotope 'H is most abundant. The ?H abundance is only 0.015
%. The third isotope 3H is not stable. For Helium one has two isotopes, *He and *He
(a-particle), the latter being the most abundant one. The elements Hydrogen and Helium
also make up the bulk of the (at least visible) matter in the universe, roughly in the order
12 : 1 (atoms) or 3 : 1 (mass).

Characteristic binding and excitation energies in nuclei are at the MeV level (compare
this with the eV-level for atoms), which for emission and absorption of photons means
wavelengths as small as 1072 m. Protons and neutrons in atomic nuclei are bound via
a completely different force than that in atoms, namely the strong force. To understand
the main features of nuclear structure one employs a (nonrelativistic) quantummechanical
description with in the Hamiltonian an (effective) potential of which the longest range
part is coming from the exchange of pions with masses m, =~ 140 MeV, leading to a
Yukawa-like tail of the form V(r) o< exp(—r/A;)/r where X, is the Compton wavelength
h/mgc =~ 1.4 fm, which is also the characteristic size of nuclei.

As seen in the Z versus N plot for nuclei, stable nuclei lie mostly on or just above the
Z = N diagonal and there are many unstable nuclei with vastly different lifetimes. For
the magic numbers indicated in the figure, nuclei are particularly stable. An important
decay mode for heavy nuclei is the emission of a-particles. The a-decay is a nice example
of quantummechanical tunneling through a potential barrier. A second decay is S-decay
in which a neutron changes into a proton under emission of an electron and a neutrino,

n—pte + . (2.14)

It is this decay that is also responsible for the instability of *H, decaying via *H — 3He
+ e~ + .. [-decay is the manifestation of yet another force, the weak force.

Qle=+1 Qle=0

NUCLEONS @ @

proton neutron | 1H - p
" 2H=pn
3H = pnn
:1“;’”9_: ppni Constituents of matter
FC=6pén (as known in 1935) rel-
LEPTONS @ e / evant for length scales
electron |neutrino (atomic nuclei) above 1 fm.
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Island of stability for nuclei.

1-10 days

10-100 days
Z 100 dgn - 10 yr
o 10-10.000 yr
N naturally radioactive
He stable
> 10.000 yr

In processes like -decay, but also in interactions of photons or electrons with atoms,
conservation laws plays an important role. The most important conservation laws are the
conservation of energy, momentum, and angular momentum. For energy and momentum
the sum of all energies and the (component-wise) sum of all momenta in initial and final
state is the same. For angular momentum the conservation law applies to the total angular
momentum of the initial and final state. This is made up from the spins and the orbital
angular momenta in a multi-particle or composite system.

Consider S-decay as an example. For protons, neutrons and electrons, the spin is 1/2
(two spin states). This implies that

(2.15)

T=Yt+Y s = integer J for even number of constituents
e e half-integer J for odd number of constituents

This led e.g. Pauli to postulate the existence of a neutral spin 1/2 particle, the neutrino,
in B-decay (Eq. 2.14). Indeed, the neutrino was found and turned out to have spin 1/2
(although with only a lefthanded state having m, = —1/2, antiparallel to the momentum).

Angular momentum is also very important in the study of transitions where photons
are absorbed or emitted. Photons have spin 1 (although with only the two states with
ms = =1, parallel or antiparallel to the momentum ). It leads to the selection rule
AJ =0, £1.

A last example we want to mention here is the Nitrogen atom. The nucleus “N
contains 7 protons and 7 neutrons. Including the 7 electrons the total angular momentum
is half-integer?. Indeed it turns out that for the atom J = 1/2. Before one knew of the

2Note that if we talk about total angular momentum of a composite system, we refer standard to its
rest-frame. In other frames one has to add orbital angular momentum
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Qle = +2/3 Qle =-1/3
QUARKS @ @
up /down
i p=uud :
.’ 3 colors ”:Udd
(nucleons)
LEPTONS @
electron |neutrino
A / § ) A Quarks and leptons (of the first
de™>S e Vv > family); these quarks are the
right— left— only ones making up the protons
handed handed lefthanded and neutrons.

existence of the neutron and S-decay, it seemed natural to think of the “N nucleus
as 14 protons and 7 electrons. In that case the atom would have had an integer J, in
disagreement with observation. This illustrates how simple combinatorial rules for angular
momentum provide strong discriminatory power.

To our present knowledge e and v, are elementary particles without substructure.
This is not true for the proton and neutron. They have a substructure, e.g. evident from
the magnetic moments of the particles. Writing

e
2m,~

Wi = gi Sk, (2.16)
one has g = 2, which was shown by Dirac to be (up to a very tiny correction) the natural
value for an elementary spin 1/2 particle. One has g, = 5.586 and g, = —3.826. In
particular the latter is a surprising result for a neutral particle. Proton and neutron turned
out to be composed of two quark species, up (u) and down (d) quarks with fractional
charges Q, = +2/3e and Q4 = —1/3 e, having spin 1/2. In addition to these quantum
numbers, the quarks carry one of 3 color charges. One of the strongest indications for the
need of such an additional quantum number came from the existence of doubly-charged
ATt particle which turned out to have spin J = 3/2. The natural explanation is a state
consisting of three u-quarks, which all are in an s-orbital (¢ = 0). Without an additional
quantum number this would be in contradiction with the Pauli principle, however. With
the introduction of color everything is fine.

The color charge turned out to be more than just an additional quantum number.
It is the source for the strong interactions. The interactions between color charges are
mediated by gluons and the theory has been given the name Quantum Chromodynamics
(QCD) because of the analogy with QED. In contrast to QED, mediated by just one
photon, there are eight gluons that actually have a color charge themselves, leading to a
linearly rising potential between color charges. This implies confinement of quarks. Only
a color neutral configuration requiring 3 quarks has a finite energy. Further substructure
than the quarks has not (yet) been found. Quarks are known to be smaller than 107'® m
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m =ud !
Quarks and leptons (of the first fam-
= doun -0 down ily) and their antiparticles. Particles
QUARKS ANTIQUARKS

and antiparticles can annihilate, e.g.

@ ete™ can be transformed into other
@ particles, e.g. a few photons. The

electron | neutrino positron | neutrino opposite process is the creation of a
LEPTONS ANTILEPTONS particle—antiparticle pair.
QUARKS LEPTONS
Family 1 @ @
up down electron | neutrino
Family 2 @ @ @ @
charm strange muon | neutrino
s | (O] 0) ][O
top bottom tau neutrino
+ +

ANTIQUARKS ANTILEPTONS

The particle content of the
+ FORCE PARTICLES Standard Model, quarks,
leptons belonging to three

@ @ § @ @ @)))) families and the force parti-

i . .
graviton photon | W, Z bosons 8 gluons cles, re{spons1b}e for the dif
ferent interactions.

electromagnetism
+

gravitation strong force

weak force

(about 1072 times the size of the nucleons). The excitation energies for nucleons are in the
100 MeV range, to be compared with the nuclear MeV-range and the atomic eV-range.
Because of the confining potential, one does not have the situation that the mass (energy)
of the composite system is less than that of the constituents, as is the case for molecules,
atoms and nuclei. In fact the masses of the up and down quarks turn out to be in essence
zero on the scale of the nucleon mass. The scales are set by the size, Ry ~ 1 fm and
hic/Ry ~ 200 MeV.

The quarks and leptons all turned out to have corresponding antiparticles, of which
the positron (e*) was the first to be discovered. Antiparticles have opposite electric and
color charges, but identical masses as compared to the particles. Three quarks can form
color neutral combinations (baryons) but also a quark and an antiquark can form a color
neutral particle, called mesons. The lightest of these are the pions. Mesons of course
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must have integer spin, e.g. the pions have spin 0.

While the exchange of gluons produces the binding force of the quarks (and antiquarks)
in baryons (gqq) or mesons (¢q), it actually does not lead to hadrons with more quarks.
Gluon exchange effectively produces a strong short-range repulsion between nucleons in
a nucleus, while the exchange of mesons produces the long-range (effective) interaction
responsible for the nuclear binding. Via the formation of quark-antiquark pairs, e.g. by
colliding electrons and positrons, et +e~ — g+¢, one has found that other quark flavors
exist besides up and down. There exist two other families of quarks and leptons. Besides
these new fermions, which in essence differ only from the first family by their masses, one
has found 3 heavy bosons, the Z° and W*-particles, which are responsible for the weak
force, e.g. in B-decay.

The 3 families of quarks and leptons, their antiparticles and the force-carrying particles
form the content of the socalled Standard Model of elementary particles. Presently one
degree of freedom, mostly referred to as Higgs particle remains to be uncovered. It will
be interesting to see if this degree of freedom is actually a particle or if it is the effect of
some underlying structure.

Exercises

Exercise A.1

(a) The (quantum mechanical) size of the hydrogen atom is of the order of the Bohr
radius ag. Re-express this quantity in terms of the electron Compton wavelength
Ae = h/mec and the fine structure constant «. Similarly express the (relativistic)
classical radius of the electron, r, = €2/4mey mec? in the Compton wavelength and
the fine structure constant.

(b) Calculate the Compton wavelength of the electron and the quantities under (a)
using the value of fic, & and m.c?. This demonstrates how a careful use of units can
save a lot of work. One does not need to know A, ¢, €, m,, e, but only appropriate
combinations.

(c) Estimate the maximal magnitude of the angular momentum if the electron would
be a rotating sphere with the radius being the classical radius under (a).

(d) Use the value of the gravitational constant Gy /hc® to construct a mass M, (Planck
mass) and a corresponding length r, and give the value of the latter.

(e) Consider photons with wavelength of 500 nm. Calculate the frequency in Hz, the
energy in J and in eV and the wavenumber in cm ' (Recall the relations A = ¢/v,

E = hv). Calculate the Rydberg energy in cm™'.

Exercise A.2

For the Hydrogen atom we have seen that for the radial wave functions u,,(r) one has to
look for eigenvalues of
R d®  RL(L+1) Z e?

Hy=—— = ,
2m dr? + 2m r? A ey
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which can be rewritten as

?  l+1 2
NESY

R

Hr:EO

where p = r/ry (choice of 2 in numerator of 2/p is convention) and

Z%e*m A €q B2
= 7' p— .
3272 3 B’ T Zerm

Eo

Construct in a similar way the characteristic energy and length scales for the case of the
harmonic oscillator,

R d? RPe(e+1) 1
H =—— — 42 T 22
2m dr? + 2mr? + g M
and a linear potential
R d?  RPL(L+1)
r=————+———=+1Ty.
2m dr? + 2mr? +lor

Exercise A.3

Find an elegant way to calculate the Bohr and nuclear magnetons,

h

o = ;n — 5788 x 1075 eV/T,
B

1y = % = 3.152 x 1078 eV/T,
4

in electronvolt per Tesla (eV/T ). As a hint, what is the unit V/T?

Exercise A.4

Not only on the basis of spin the presence of electrons in a nucleus can be excluded. A
second argument comes from the kinetic energy of electrons confined to nuclear distances.
Estimate this (relativistic!) energy using the uncertainty relation to get the momentum
of the electron in a nucleus of say R4 ~ 2 fm. What about the energy of nucleons in a
nucleus?

2.4 Reader part A - The structure of Matter

Introduction

1. Construct characteristic quantities for quantummechanical and/or relativistic sys-
tems bound by or subject to particular type of interactions.

Units

1. Ability to estimate order of magnitudes of related physical quantities given one of
them, such as energy <« frequency <> wavelength for a photon.
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The constituents of Matter

1.

What are the constituents of matter. What are the characteristic scales at the
various layers? What are the characteristic (excitation) energies? What are the
binding forces?

Give a few reasons why atomic nuclei cannot be built from protons and electrons?

How many forces do we distinguish in nature? Compare their strengths. What are
the corresponding force-carrying particles?

. What is the composition of baryons and mesons? Are these fermions or bosons?
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PART B
NUCLEI

2.5 Properties of nuclei

The atomic nucleus is built from Z protons and N neutrons, containing A = Z + N
nucleons. Stable nuclei are found up to A = 209 (Bi) and in the laboratory up to about
A = 240. The diagram of nuclei has been given already in the first part. For atomic
physics, Z clearly is the most important number, determining the charge of the nucleus.

Z

clei with definition of isotopes,
1sotones and isobars.  Leaving
aside the electromagnetic prop-
erties, isobars have very similar
properties, showing the charge in-
dependence of the strong interac-
isobars ( A flxed) tions (they are similar for proton
and neutron). Examples of isobar
states are proton and neutron, *H
and 3He, or *C and '*N.

isotones (N flxed) Schematic N — Z diagram of nu-

Isotopes (Z fixed)

Masses of nuclei

The mass of a nucleus is not equal to the sum of proton and neutron masses, but one has
M = Zmy,+ Nm, — B/, (2.17)

where B is the nuclear binding energy. For instance, using MeV’s as unit - often these
calculations are done in atomic mass units (1 u = 931.478 MeV) - we calculate the binding
energies for the deuteron and for 12C. Note that the mass of the Carbon nucleus is 12 u
minus 6 electrons, which equals 11.171 80 GeV /c%.

mg = 1.87562 GeV/c’ m(*?C) = 11.17180 GeV/c”
m, = 0.93827 GeV/c’ 6m, = 5.62963 GeV/c®
m, = 0.93957 GeV/c? 6m, = 5.63739 GeV/c
B = 0.00222 GeV =2 x 1.11 MeV B = 0.09522 GeV = 12 x 7.93 MeV

Binding energies are usually quoted per nucleon. This number is roughly constant. The
socalled separation energy of a nucleon is found as Eseparation/c? = M(A)—M(A—1)— My
= B(A—-1)— B(A).

213



B[MeV]

Binding energies per nucleon as a func-
tion of A for stable nuclei shows a shape
as in the figure. It reaches a maximum
around 9 MeV for iron (°°Fe) and then
gradually decreases to about 7.5 MeV
for the largest known A-values. For
light nuclei fusion produces energy, for
heavy nuclei fission will produce energy.

Sizes of nuclei

The charge distribution of a nucleus can be experimentally measured by elastically scat-
tering electrons off the nucleus. Elastic scattering means e + A — e + A (we will return
to these scattering processes later). It turns out that the charge, and hence the protons
have roughly a constant density. From a variety of other experiments one has also found
a more or less constant neutron density.

4 p(r) A roughly constant density implies
. R =1y AY3. (2.18)

Experimentally the matter distribution (pro-
! tons and neutrons) requires 7o ~ 1.12 fm,
| T while the charge distribution (protons have
R a size too!) is about 7o ~ 1.2 fm. This im-
plies a nuclear density of about 10'° g/cm?.

As a general rule, systems that have a size, have some substructure and they can be
excited. We have seen this for atoms. As in the case of atoms one could use photons
to do this or detect photons if nuclei are excited in other ways, e.g. via collisions with
electrons or protons. In this case, however, one needs photons with a quite different wave-
length. The typical excitation energy in nuclei go up to the binding energy, i.e. MeV’s,
corresponding to wavelengths as small as 1072 m.

Spin, parity and magnetic moments of nuclei

The spins of nuclei with A even is always integer, spins of nuclei with A odd are always
half-integer, indicating that the nucleons with spin 1/2 are the particles determining the
mass number A. In general one has

N even, Zeven = .J=0 159 stable nuclei,

N even, Z odd _ . 50 .
N odd, Z even } = J = half — integer { 53 } stable nuclei,
N odd, Z odd = J = integer just 7 stable nuclei.
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In general as many neutron and proton spins as possible are paired to zero. Nuclear
states appear to have well-determined parities. This is found by studying selection rules
in transitions between excited states in a way similar to that for atoms. Hence, the nuclear
force respects mirror symmetry. Some examples are:

nucleus | n lH 2H 3H 3He *He °Li *Ca *Ca *Ca %Ca
- T T T T = =
I S U A AR N U S
g(A) |-383 559 171 596 -426 - 164 - -3.19 -

In this table we also give the magnetic moments for nuclei writing as for nucleons

eh J
Ha = Q(A) .

— —. 2.1
2m, h (2.19)

We already discussed that for proton and neutron the results deviate substantially from
those of an elementary spin 1/2 particle, g = 2. For nuclei, however, one sees that the
magnitude is not dtermined by the nuclear mass, but rather by the nucleon mass. For
example for the deuteron (spin J = 1) the result is close to the sum of proton and neutron
magnetic moments, g, + g, = 1.76 (as may be naively expected, if orbital effects don’t
play a role), while also the results for ®H and ®He are of the expected order of magnitude
if angular momentum doesn’t play a role. For higher spins (like the case of *'Ca) the
relation with the protons and neutrons is less clear, but the magnitude remains of the
order of eh/2my.

Electric quadrupole moment

The electric quadrupole moment for a system of charged particles is a tensor given by
Qij = Z Qa (3 TaiTaj = T 5z‘j) (2.20)
a

Just as a magnetic moment can be measured in an external B-field, the quadrupole mo-
ment can be measured in an external E-field. It causes a splitting of levels depending only
on |M| for spins J > 1. Note that a state with total angular momentum J = 0 has no
magnetic moment nor quadrupole moment, while a state with total angular momentum
J = 1/2 has no quadrupole moment. This is independent of the complexity of the system.

Shapes corresponding to zero, positive or
negative values for the quadrupole moment
Q=0 Q>0 Q<0

(033, where the arrow is the z-direction de-
termined by the spin J.

2.6 Semi-empirical mass formula

Starting with Weisacker in 1936 attempts have been made to understand the systematics
of nuclear binding energies via an empirical mass formula. The starting point is an average
binding energy per particle,

B1 = a1 A,
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a formula that needs several corrections.

(1) The first correction is a correction because a nucleus has a finite size. Nucleons at the
surface don’t experience the same force. This correction is assumed to be proportional to
the surface ox R? oc A%/3. One writes

ABQ = —Q2 A2/3.
(2) A second correction is the electrostatic self-energy. For a uniform charge distribution
one has 3 Q? P
Therefore one writes )

ABg = —as m,

(3) A correction is expected to come from the deviation from the fact that N and Z are
not equal. A simple model to see what is the expected dependence is assuming a Fermi
gas model. Protons and neutrons in nuclei are considered as two (independent) Fermi
gases in a volume V', which have similar levels available (the strong interactions are much
stronger than electromagnetic effects). Thus for both types one has a level density (see
appendix on plane waves) n(E)dE = V d®p/(2nh)3. For a spherically symmetric situation
one obtains n(E) oc V VE. Integrating n(E) and En(FE) up to the Fermi energy Er one
gets the number of particles NV and the energy U of those particles,

N Ep 9
— dE EV? = Z B3? 2.92
U By 9

el dE E3? = Z g3? 2.23
o [ - B, (2.23)

giving the well-known value of %EF for the average energy of particles in a Fermi gas.

The equations also tell us that the energy of the N particles is U o« V E2/? o« N5/3/V%/3,
Thus we have for a system of Z protons and N neutrons in a nuclear volume V oc A,
Z°/% 4 N°/3 5(N—2)? 20 (A/2 — Z)? N

— A4+ = —
U x i +9 1 + A+9 1

The expansion around Z = N shows as expected a term in the energy proportional to A,
which can be included into a; and a correction

(A/2—-2)
R

(4) The last correction we discuss is the socalled pairing term distinguishing even-even,
even-odd and odd-odd cases. Empirically it has been found that pairing off spins between
identical fermions (protons or neutrons) lowers the energy. The correction is less important
for heavy nuclei. One uses

(2.24)

AB4 = —Q4

Z N | # unpaired energy correction
spins A

even even 0 lower +as A=3/4
even odd 1 0 0
odd even 1 0 0

odd odd 2 higher —a5 A=%/*
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The resulting Weisacker formula for the binding energy is

7? (AJ2 — Z)?
B=qq A— a9 A2/3 — asg A1/3 — Q4 1 + A. (225)
The parameters from a best fit are
a1 a9 a3 a4 as

15.76  17.81 0.7105 94.80 39  MeV
0.0169 0.0191 0.000763 0.09855 0.042 u

Stable nuclei

For constant A we can simply find the value for Z for which the binding energy is minimal
via (0M/0Z) 4 = 0, where M = Am,, + Z (m, —m,,) — B/c*. This yields (m, — m,)c* —
2a4(A/2—Z) A +2a3 Z A3 =0 or
my,—mp)c?
A (14 ozl

4

T2 (1+ 2 423)

(2.26)

If A is even, the possibility exist that there is more than one stable nucleus because of
the pairing interaction (see figure).

E
' 00
Aeen .
e g For even A values the (Z, N) combinations will be in turn
' ‘ee even-even and odd-odd. In this way we can have several
. / stable nuclei. Between two stable isotopes, there is an
N S unstable nucleus, which can decay via -decay to be dis-
e o4 cussed below in more detail. If A is too small (depending
. ’ on the parabolic shape of the B(Z, A fixed) curve, there
e will be not more than one stable nucleus. This is the case
. Zg ~— for light nuclei (A < 35).
B B

2.7 Scattering theory

Before we discuss models for the nucleon-nucleon force and for nuclear structure, we dis-
cuss some aspects of scattering theory needed to understand how experimental information
is interpreted.

Cross sections

The quantummechanical treatment of a scattering problem is that of a particle (with mass
m and incoming momentum p) scattering in a given potential V(). We assume that the
particle is scattered into a final state with momentum p’. The latter is the result of a
measurement with a detector with opening angle df2, located under an angle (6, ¢) with
respect to the incoming momentum.
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The number of scattered particles per unit time per solid angle, n(, ¢), is proportional
to the incoming flux j;,, the number of particles per area per unit time,

n(6,$)dQ = |j,;,| do(8, p). (2.27)

This is the definition of the differential cross section do, from which it should be imme-
diately clear that the unit of cross section indeed is that of an area.

Typically cross sections have something to do with the area of the target as seen
by the incoming particle, e.g. for proton-proton scattering a characteristic cross
section is 40 mb, where 1 barn = 1 b = 1072 m?. The number 40 mb, indeed,
is roughly equal to the area of a proton (with a radius of about 1 fm = 10715
m). Besides the area of the target the cross sections also depends on the strength
of the interaction. For instance electromagnetic interactions are typically a factor
100 or (100)? smaller, e.g. ., = 100 pb and oy = lub, corresponding to the
presence of the fine structure constant a or a? respectively, where a = €2 /4neghic =
1/137. Weak interactions, e.g. neutrino-proton scattering, again have much smaller
cross section in the order of 10~2 pb, indicative for the weakness of the ”weak”
interactions.

Cross section in Born approximation

We use the result of time-dependent perturbation theory to obtain an expression for the
cross section, namely the unperturbed situation is the free case, with as possible solutions,
the incoming particle in a plane wave, ¢;(r) = \/p exp (ip - r/h), with energy E = p*/2m
and the detected final state, ¢;(r) = \/p exp (ip’ - 7/h), with energy E' = p”/2m. Note
that we allow processes in which the energy of the scattered particle changes. writing
@ = E' — E one has Q = 0 for an elastic scattering process, an energy release, ) > 0,
for an exothermic process and energy absroption, () < 0, for an endothermic process.
The potential V' is a perturbation that can cause transitions between plane waves. Using
Fermi’s golden rule, one obtains the number of particles with momentum p’ (of which the
direction with respect to p is given by the angles 6, ¢),

n(6,0)d2 = 7 (149, VIg) [ p(B")] (2.25)

E'=FE+Q
In order to get do we need to know the flux Z in the initial state and the density of states
p(E'") in the final state at the energy E’ fixed by energy conservation. For the initial plane
wave state the flux is given by Z = pv = pp/m. The density of final state plane waves is
(see appendix D),

3/_1 pIZ dldQI_l mp,

p(p)d’p’ = S @ = Gy

dE' dSY = p(E') dE' dSY. (2.29)
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With the flux and density of final states, we get immediately

_ ! 3
do (6, 6) = d9 (2@2) [ exp( (p—p)- ) V(r)
or introducing the Fourier transform
k) = / & V(r) exp(ik - 1), (2.31)

one obtains the following expression for the differential cross section in the socalled Born

approximation,
do m \2p |~ .2
= (=) Ly
dsy (27rh2> p‘ (@)

where hq = p—p' is the momentum transfer in the process. For an azimuthally symmetric
differential cross section one uses d€2 = d cos 6 d¢ = 27 d cos 6 to obtain do /df. Integrating
the differential cross section over all angles one obtains the total cross section,

do
- / a2 22 (B, Q). (2.33)

Note that in the case of elastic scattering one has p’ = p and the momentum transfer
squared is given by

2

: (2.30)
E'=FE+Q

(2.32)

n'q’ = |p—p'> =p"+p* +2pp' cos(0)
2p*(1 — cos @) = 4p? sin?(6/2). (2.34)
A dependence of the differential cross section (do/dS2)(E,#) on this combination is a test

for the validity of the Born approximation. This dependence is in particular applicable
for central potentials, V() = V(r), in which case the Fourier transform

/ o0 1 )
Vig) = /d37° V(r) exp(iq-7) = 27?/0 dr /_1 dcos o 72V () e 4" o5

= 4% /OOO dr vV (r) sin(qr), (2.35)

only depends on ¢ = |q/.
The above equations also apply to scattering processes of 2 particles provided one
works in the center of mass frame and uses reduced masses.

The square well potential

As a first application consider the square well potential, V(r) = V; for r < a and zero
elsewhere for sufficiently weak potentials at low energies and small angles (¢ga < 1). We
will come back to the applicability of the Born approximation in a later section. The
Fourier transform is given by

- 4 a 4 qa 4
Vig) = 7TV0 / dr r sin(qr) = 7T3V0 dx z sin(z) = 7T3V0 [sin ga — qa cos qa]
q q
a 4 V 1 1 4
v T ga - @) — g0+ (00 + | = 5 Vi, (2.36)
7 3l 9l 3
leading for £ — 0 to
do 1 (2mV; a*\’ 9
RGPV i el 2.
a~ 3 < 2 ) a (2.37)
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The Coulomb potential

The integral

~ Ze* Arx

Vig) =~ / ” dr sin(gr) (2.38)

diverges and we need to consider for instance the screened Coulomb potential, multiplied
with exp(—pur). In that case one obtains

- Ze? 4 b
Vig) = 4;60 ;/ dr sin(qr)e™*
_ Ze? 47T d’l“ l (ei(q—H’u)T _ 62'((1—1'/1')7”)
drey g 2
Ze? 1
= = - 2.39
€ q* + p? (239

allowing even the limit g — 0 to be taken. Thus

do m \?[ze*\? 1 ze? |\’ 1
B0 = () () == . 2.4
dQ( )= o h? ( €0 ) q* (87r eopv> sin®(0/2) (2.40)

This result is known as the Rutherford cross section.

Scattering off a composite system

Consider the scattering of an electron off an extended nucleus consisting of Z protons (and
N neutral neutrons). The interaction between the scattering electron and the nucleus is

given by,
z 2

e
1% ]; Trelr—r (2.41)
We consider the nucleus to be in a state |®4). The wave functions of the scattering
electron in initial and final states are plane waves characterized by the momenta p = hk
and p' = hk', respectively. The full initial state and final state wave functions are
taken to be Wi(r,ry,...,7z) = /pexp(ik - 1) Pa(ry,...,7z) and Vy(r,ry,...,72) =
VP exp(ik'-1) ®p(ry,...,7z), respectively. The Fourier transform of the potential needed
to calculate the transition rate and the cross section is

Z 2

Vig) = /d3r/<Hdrk> exp(iq-r)®4(r1...75) (Z L) Qu(ry...77)

ioidmeo v —

1
_ ; -
= 4%602/<Hdm> ry. ..’r‘z)/dT exp(iq-r) =
- 47'(' €0 j= 1/ (H d3rk> 7’1 T TZ) eXP(i q- 'rj) /d3’l"l eXp(i q - 'rl) %
e? Arm
- o 2.42
Tire ¢ M9 (2.42)
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where we have introduced the nuclear form factor

Falq) = é/<£[1d3rk) exp(iq-7j)p(ri...77) (2.43)

VA
= /d3s exp(iq- 3) Z/(H d3rk> p(,8,1m2...72),
k=2

J

pA‘(rs)
which is the Fourier transform of the nuclear density p,(s). We note that the wave
function ® 4 is fully antisymmetric. The result for the cross section is
doa m e
21 €g B2 2

i ) Lirsa), (2.41)

and shows the possibility to determine the distribution of nucleons in a nucleus.

Form factors

From the measurements of form factors one obtains via the Fourier transform the charge
density,

F(q) = / &r exp(iq-T) p(r). (2.45)

As before, in discussing the potential in momentum space, one has for a spherically
symmetric density,

F(q) = %T /dr r p(r) sin(gr). (2.46)

For a spherical distributions it is trivial to find by expanding the exponential exp(iq - )
=1+ig-r-1(q-7)*+..., that

ﬂ@:@—éf&%+“w (2.47)

where Q = [d®r p(r) is the total charge and (r?) = [dr r? p(r) is the charge radius
squared. The small-g behavior of a form factor can thus be used to determine the charge
radius of an atom, a nucleus or a nucleon.

Some examples of form factors corresponding to specific densities are:

e A uniform density
p(r) = po forz <R (2.48)
(and zero elsewhere). If py = 3/47 a3, i.e. the integrated density is one, the Fourier

transform is given in terms of the Bessel function ji,

F(g) = %, where ji(x) = ST T8t (2.49)

T2 T

Note that 3, () .
Nn\r 2
N1 —a24 ..., 2.50
x 10 ( )
and, indeed, the charge radius of a uniform distribution is (r*) = 2 R?. Examples
of uniform densities are the nuclear densities, although agreement with data can be
improved by introducing a smooth fall-off at the edge.
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e A (normalized) Yukawa distribution

plr) =1 (2.51)

has as form factor

F(g) (2.52)

St 1+
which is called a monopole form factor. We have encountered this same Fourier

transform already earlier where we derived the momentum space screened Coulomb
potential.

e The form factor of the (normalized) exponential distribution
3

2 —ur

= 2.53
£ e, (2:53)

p(r)

is simply found by differentiation of the Yukawa form factor with respect to pu,
yielding
1
Flg)= —, 2.54
WG eey 2
which is called a dipole form factor. The charge density of the proton behaves in
this way, with the experimental formfactor having u? ~ 0.71 GeV?2.

e Finally a normalized Gaussian distribution
p(r) = poe 37 /% (2.55)
has also a Gaussian form factor

F(q)=e 7R, (2.56)

2.8 The nucleon-nucleon force

The most important properties of the force between two nucleons, deduced from scattering
experiments between nucleons, are:

1. The force is short-ranged, i.e. of the order of fm’s (1 fm = 107! m, also referred to
as 1 Fermi). This is deduced from scattering experiments between nucleons.

2. The force is charge independent, which means that the charge between two protons
is the same as between proton-neutron and between two neutrons. Indications for
this come from

e Light nuclei have equal number of protons and neutrons.
e The binding energy per nucleon is roughly constant.

e The mass difference between mirror nuclei (same A on opposite side of Z = N)
is tiny, e.g. for *H and 3He.
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3. The force between nucleons depends on the spin of the nucleons, again something
which can be deduced from scattering experiments.

4. The force is not central. It depends on the spin orientations with respect to the
relative coordinate of the two nucleons. This means that the orbital angular mo-
mentum £ is not compatible with the hamiltonian (¢ is not a good or conserved
quantum number).

5. At short range the force is repulsive.

Coulomb
repulsion

mr[fm] The nucleon-nucleon potential, which for pp in-
| 1.0 cludes a Coulomb repulsion. A reasonable approx-
imation for the deuteron is a square well potential
with depth —V; and range a (possibly with a hard
core, V (r) — oo at a distance r < b).

I T

In order to study the two-nucleon system, it is necessary to look at the possible spin and
spatial wave functions. The two nucleons have spin 1/2, from which one can construct
one antisymmetric spin 0 wavefunction and three symmetric spin 1 wave functions. Next
consider the relative orbital angular momentum ¢, which can be ¢ = 0,1,.... It is /,
which also determines the parity of the two-nucleon system, IT = (). In the case of two
protons or two neutrons, one cannot simply combine any orbital wave function with any
of the two spins. The total wave function must be antisymmetric. As far as the orbital
part is concerned exchanging the particles is the same as changing the relative coordinate,
thus also the exchange symmetry is (—)*. Including spin one obtains the configurations
indicated as 2*1£; in the first row. In the table is indicated if the Pauli principle allows
such configuration for pp, nn or pn.

Y pp nn pn (NN)r=o  (NN)r=
1S, allowed allowed allowed - allowed
33, - - allowed | allowed -

P - - allowed | allowed -
3P0,1,2 allowed allowed allowed - allowed

D, | allowed allowed allowed - allowed
3Dy o3 - - allowed | allowed -

Ly - - allowed | allowed -
3F2,3,4 allowed allowed allowed - allowed

The similarity of the strong interactions for protons and neutrons have led to the intro-
duction of #sospin symmetry. Proton and neutron are considered as two possible nucleon
states, which are labeled by isospin I and third component of isospin I3, in complete
analogy with spin. The two-state nucleon system is assigned I = 1/2 and I3 = +1/2,

p) =1[1/2,+1/2),  [n) = [1/2,=1/2).
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As seen in the table above, the use of isospin is not necessary, but it is often convenient.
When one uses isospin, the generalized Pauli principle requires antisymmetry of the full
wave function, which now incorporates orbital part, spin part and isospin parts. Just
as for spin, the isospin singlet / = 0 is the antisymmetric wave function and it can be
combined with an antisymmetric spin wave function S = 0 only for an antisymmetric
orbital wave function (¢ odd).

The deuteron

The deuteron is a proton-neutron bound state with J% = 1. There is no proton-neutron
state with J' = 0%, nor are there proton-proton or neutron-neutron bound states. The
binding-energy of the deuteron is small, B = 2.22 MeV. The conclusion is that the NN
potential is spin-dependent. It appears that the groundstate in the two-nucleon system
is a weakly bound 38 state (isosinglet with I = 0), while the 1S, states (isotriplet with
I = 1) are not bound. For a bound state, we know that the wave function for large r-values
approaches u(r) — e~®", where B = h*a?/2m. Thus o =~ 46 MeV ~ 1/4 fm~! (note
that the reduced mass m = 0.5 my). This weak fall-off indicates indeed a weakly bound
state. To estimate the parameters of the nucleon-nucleon potential assume a square well
with depth —V; and size a. Taking as an approximation o = 0 (a bound state at the edge
of the square well called zero-binding approzimation) the wave function in the well must
satisfy u'(a) = 0. The wave function in the well is given by

2m(E + Vj)

u(r) o sin(Kr) with K= 2 ,

which with E ~ 0 gives

2mVjy T , w2 h%c?
K2 “ 2 0d 8mc?

~ 2.5 GeV! ~ 0.1 GeV fm?.

Using results from NN scattering (with do/dQ2 ~ 15 mb/sr at threshold) one obtains
a ~ 1.5 fm and hence V{ &~ 45 MeV.

Actually, if the deuteron would be a pure 3S; bound state, it would have a quadrupole
moment ) = 0. Experimentally, one has found ) # 0. Furthermore, the magnetic
moment deviates (slightly) from the sum of the proton and neutron magnetic moments.
These effects indicate that the actual groundstate is not a pure S-wave, but is a mixture
of 35, and 3D, both of which can contribute in a J™ = 1% state. The 2P, state cannot
contribute to a positive parity state. Calculations indicate about a 6 % admixture of
D-wave, i.e. ¥~ 0.97¢(3S1) + 0.259(3Dy).

Summarizing, the nucleon-nucleon force has various contributions, among them a cen-
tral, a spin-spin and a tensor contribution,

3(s1-7)(s2-1)

Van(r) = Ve(r) + Va(r) 1 - 82+ Vi(r) 2

— 8189, (257)

The tensor contribution is responsible for the mixture between different /-waves. For such
a potential £ is not a good quantum number, although the total spin turns out to be still
a good quantum number. The spin-spin interaction turns out to be repulsive for S =1,
rendering the I = 1 nucleon-nucleon 'Sy wave (with pp and nn) unbound. Also parity is a
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good quantum number for the above potential and for the strong interactions in general.
A potential as above can be derived from the exchange of pions between the nucleons. It
is the same mechanism as the exchange of photons that is used to derive the Coulomb
potential. In such derivations (for which one needs to use methods from quantum field
theory) one needs a coupling of the particles, e.g. e/,/€ for photons to charged particles
or g for pions coupling to nucleons and the propagators for exchanged particles, given by
1/(g* + m*3/h?) = 1/(¢® + X2).

e

electroni 1 2 1
photon 7 Vig) = e
e? 1
ectron el/e, 0
i
nucleon : 1 1
———<__pion — Vig)=¢* —M—
p B+ m?2 (@) =g q> + m2c?/Rh?

2.9 The nuclear shell-model

For larger nuclei an approach similar as in the atom is taken. A nucleon is considered in
the potential produced by all other nucleons.

V

N A typical ansatz for this is a well-like potential, or a
bit more sophisticated, a Woods-Saxon potential of
the form

v
r V(r) 0 (2.58)

T 1+ expl(r—a)/t]’

which falls to half its central value at » = a with the
thickness ¢ determining how much it deviates from a
square well (¢ — 0). The shape of the effective poten-
tial, not surprisingly, resembles the nuclear density.

In spite of the fact that nucleons are pretty big themselves with Ry = 0.8 fm, the nuclear
wave function is well described in a shell model, in which nucleons occupy consecutive
orbits in the nuclear potential, with only as a refinement some additional correlations
reflecting the short-range repulsion between pairs. As in atoms, the wave function can
be written down as a Slater determinant, a properly antisymmetrized product of single-
particle wave functions.
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The effective level structure available for nucle-
7777777777777777777777777 126 i
ons (protons and neutrons) in a nucleus. The
1h order of magnitude is MeV’s. In a nucleus there
is a strong spin-orbit splitting,
fffffffffffffffffffffffff 82 2 gy
3s \\\ - 2d 3/2 Ajg
2 Vi(r) =———2~2"s, 2.59
2d i W= (2:59)
T 2d 5/2
9 1g 72 so the orbital angular momentum and spin of a
R N e L R 50 nucleon must be coupled to the total angular mo-
19 9/2 . . . . .
2 ) 20 1/2 mentum j. Important is the sign of the spin-orbit
1f s %p%//zz interaction, which causes the highest j-values to
L e ___. come down in energy.
72 %8 &
————————————————————————— 20 A spin-orbit interaction with this sign
2s 1d 3/2 is actually found by solving the rela-
1d i iz }5//22 tivistic Dirac equation for light parti-
7777777777777777777777777 8 cles in a square well, instead of the
1 1o 12 Schrodinger equation. A whole Dirac
P S 1B 32 phenomenology is built upon this treat-
ment, in which the typical 50 MeV po-
7777777777777777777777777 2 tential added to the mass M + V is re-
s 1s1/2 placed by a sum of M — Vicatar + Vvector;
| | with Vgealar being of the order of several
) hundreds of MeV.
nl nl j

The dashed lines in the spectrum of nuclear levels indicate gaps in the spectrum and the
numbers are the total number of levels below. This leads to the socalled magic numbers
for Z and N corresponding to relatively stable nuclei. For nuclei with one additional pro-
ton or neutron (or one missing) one immediately finds the J values of the nucleus. For
other nuclei finding J™ is not much harder because of the pairing of spins. The nuclear
shell model has been very successful in providing reasonable wave functions, excitation
spectra, and several nuclear properties, such as magnetic moments, transition rates and
transition form factors.

Measuring the ’single particle orbits’

In a process like

e+A—e+(A-1)+p (2.60)
B

one can obtain the wave function squared via the emitted proton p in the process. The
principle is the same as in measuring densities via the form factor as explained above.
One again calculates the transition amplitude, but the final state wave function is the
remainder nucleus (A-1) and the emitted proton with momentum p (we will neglect the
recoil of the (A — 1) nucleus). Thus ®g(ry,...,rz) =exp(ip -r1) Pa 1(rg,...,77). One
obtains in analogy to Eq. 2.42

VP, q) = (A—1p@),ek)|V|A;e(k))
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6

Z/ (Hd Tk) exp(iq - r;) exp(—ip - r1)

X (PAfl(’rQ: EERE) Z) CDA(rla .- '7TZ)'

CAn € q?

When the nuclear wave function is written as a product of single particle wave functions,

Du(r1,...,77) = da(r1) Pp(r2) ... 0, (rz) and Pa_1(ro,...,72) = Pp(rs)...0,(ry) one

sees that
e Ar -

— ¢a(P' — q) (2.61)

/
Vipha) = - 7
where @, is the momentum-space single-particle wave function. The cross section thus is
simply proportional to |¢,(p’ — q)|2, where (in the limit of heavy nuclei) the momentum
P’ — q is just the momentum of the struck nucleon. Note that we have skipped here some
(if p’ and g are sufficiently high, minor) complications. Furthermore one should include
proper antisymmetrization, but this is straightforward.

2.10 Nuclear reactions and decay

Beta-decay

We already mentioned the neutron decay,
B~ — decay : n—p+e + . (2.62)

For the neutron the lifetime is about 15 minutes. In nuclei, this decay is possible provided
the energy difference between initial and final nucleus is larger than one electron mass.
This causes decay of nuclei with Z < Zg.p1e along an isobar line in steps AZ = +1 towards
the stable nucleus. An example is the decay of tritium (*H) into 3He. The maximum
energy available to the electron depends on the mass of the neutrino. This was the first
(obvious) attempt to obtain limits on the mass of the neutrino. These experiments (see
next part) led only to upper limits in the order of eV’s. The transition of a proton into a
neutron,

BT — decay : p—n+et +u,, (2.63)
is not possible for a free proton (m, < m, + m. + m,) but is possible in nuclei, causing
decay of nuclei with Z > Zg.p1e along an isobar line in steps AZ = —1 towards the stable
nucleus.

In an atom, the presence of electrons can lead to the socalled electron capture for which
the underlying process is

e — capture : € +p—n+v,. (2.64)

Gamma-decay

Emission (and in principle also absorption) of photons with typical energies of the order
of 1 MeV occur in 1-particle transition, where one proton or neutron switches from one to
another level belonging to the excitation spectrum of the same nucleus (AZ = AN = 0).
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As selection rules one has parity and spin, which are good quantum numbers. Photon
emission and absorption proceeds via operators that are connected to the position oper-
ator, such as the dipole operator, quadrupole operator, which enter via an expansion of
the photonic plane wave. One distinguishes electric (E¥) and magnetic (M£) multipole
transitions with £ = 1 (dipole), 2 (quadrupole), 3 (octupole), etc. The selection rules are

Et: P=(-) and |AJ|<Y,
Me: P=(—)" and |AJ]| <L

The typical strength of multipole transitions is proportional to

size of system ¢
strenght
wavelength of photons

while furthermore magnetic transitions are weaker than electric ones. This explains why
for atoms (d/A ~ 107%) only electric dipole transitions are relevant, while for nuclei
(d/X\ ~ 1071) higher multipoles are also important.

Photons with smaller energies, £, ~ 100 keV can be used to study vibrational and
rotational excitations of the nucleus. These are collective phenomena to be compared
with the vibrations and rotations of molecules.

Alpha-decay

Alpha decay is the emission of a-particles, a process possible for heavy nuclei,
a — decay : 2X — 575X +a. (2.65)
Some radioactive chains are:

28Th — (1.5 x 10 yr) — 2%%Pb (running via nuclei with A = 4n)
BTNp — (2.2 x 10° yr) — 20°T1 (running via nuclei with A = 4n + 1)
287 — (4.5 x 10° yr) — 2%Pb (running via nuclei with A = 4n + 2)
25U — (7 x 10° yr) — 27Pb (running via nuclei with A = 4n + 3)

The “He nucleus is the most optimal nucleus to be emitted, because its binding energy
is much larger than that of the lighter nuclei, while the probability to find a *He-like
configuration (with both protons and neutrons paired to spin 0) is large compared to
configurations of more protons and neutrons. The reaction will only occur if some energy
Q@ is released. The enormous diversity in lifetimes can be easily understood in terms of
the tunneling (see figure) through the barrier showed above. From quantum mechanics
we know that the transition probability for tunneling a barrier is given by

T ~ exp (—2 /R " \/ 2m (Vi(_;) - E)) . (2.66)

The tunneling explains the tremendous energy sensitivity of the lifetimes for a-decay.
With a typical resonance time of the « in the nucleus of 75 ~ 2R/v, where R is the
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To understand «-decay, one uses an ef-
fective potential for the a-particle with
respect to the 4_2X. Somehow the o
is bound at the energy M(4X)c? in a
metastable state caused by a barrier,
which behaves for r > ry AY? roughly as
V(r) =~ 2Z¢?/4neyr. The « particle can
tunnel the barrier.

size of the nucleus and v is the velocity of the a-particle one obtains (with £ = @ =
2Z€2/47T60 Rl),

o (o P _ (B )
(

2.67)
It results in In7 ~ a/+/@Q — b, ranging from fractions of a second to more than 10° years
when changing Q from a few MeV towards 10 MeV.

Fusion and Fisson

We already mentioned collective excitations in nuclei that are excited by photons. Simi-
larly the capture of thermal neutrons can produce an instable nucleus, e.g.

WY 4 s (P0)

The latter nucleus is instable and (like a droplet) fissions into two fragments. The net
energy result is about 240 nucleons gaining some 0.7 MeV binding energy.

For light nuclei fusion will produce energy. This process is the engine of stars burning
Hydrogen into heavier elements, in particular into Helium.

Exercises

Exercise B.1

Construct the spin wave functions for ppn and argue which of these is the one relevant
for 3He in the ground state.

Exercise B.2

Estimate the size of the az term in the semi-empirical mass formula using Eq. 2.21

Exercise B.3

Check the stability line Z(A) as calculated from the semi-empirical mass formula for a
few examples, using the island of stability figure in part A or some table of stable nuclei.
Find some A’s for which you expect more than one stable nucleus.
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Exercise B.4

Determine the depth of the deuteron potential, using a square well potential with a hard
core for r < b = 0.4 fm and a range a = 1.5 fm. Do this in the zero-binding approximation
and numerically [e.g. using Mathematica).

Exercise B.5

Given that the proton charge form factor is a dipole form factor with py? = 0.71 GeV?,
calculate the charge radius of the proton.

Exercise B.6

Look for the spectrum of a square-well or (with an algebraic manipulation program) a
Woods-Saxon potential (with a small thickness parameter, say ¢ = 2 fm with depth V}
and a nuclear’ size ry A/® depending on A. Play a bit with the depth, so as to get
consistency, that means you need at least sufficient orbits to place all neutrons. If you
really get going, add a repulsive Coulomb interaction and solve for the proton levels.

Exercise B.7

Determine the spin and parity of the following nuclei: 3¢Ar, 3" Ar, 38Ar, 3Ar and *°Ar.

Exercise B.8

Show the InT ~ a//Q — b behavior for a-decay using the tunneling through a Coulomb
potential of the form V (r) = 2Ze? /4meyr from R to Ry, where Q = 2Z¢?/4mey R,. Take
characteristic values Z = 90 and A = 220. To estimate the velocity of the a-particle in
the nucleus use a typical value for the kinetic and potential energy of 50 MeV.

Exercise B.9

Estimate the energy release of a 23>U nucleus splitting into two (roughly equal) fragments.
How much energy can be released from 10 kg 23°U. Convert this into Joules.

Exercise B.10

The half-life of 2%5U is 7.04 x 10% yr, while that for 28U is 4.468 x 10° yr. Assuming
as much of both isotopes when the Earth was formed en the present abundance of the
235-isotope of 0.72 %, deduce the lifetime of the Earth.

2.11 Reader Part B - Nuclei

See also the items on nuclei in part A.
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section in notes | section(s) in Brehm and Mullin
5.1 14.1, 14.2, 14.3, 14.4

5.2 14.5, 14.6

5.3

5.4 14.7, 14.8, 14.12

5.5 14.9, 14.10, 14.11

5.6 15

Properties of nuclei

1. What are isotopes and isobars? Give a few examples.

2. What is nuclear binding energy? What is roughly the order of magnitude? How is

its variation as a function of the mass number A?
Estimate the amounts of energy released in fusion and fission reactions.

How large are nuclei (order of magnitude)? How does the size vary with mass
number A? What does this imply for the density?

. Why are spins of nuclei with even mass number A integer and those with odd mass

number half-integer?

. What are characteristic orders of magnitude of nuclear magnetic moments?

Explain why the magnetic moment of 3H is close to that of the proton, while that
of 3He is close to that of the neutron.

Semi-empirical mass formula

1.

Give qualitative discussions for the various terms in the semi-empirical mass for-
mula?

. Estimate the magnitude of the electrostatic self-energy by calculating e?/4mey R for

R =1 fm.
Explain via the semi-empirical mass formula why N > Z for heavy nuclei.

Explain why some nuclei have more than one stable isotope?

Scattering theory

1.

In the socalled Born approximation, cross sections are proportional to the square of
the absolute value of the potential in momentum space.

. The effect of an extended charge distribution in an electromagnetic scattering pro-

cess is the replacement Z — Z F'(q), where F(q) is the form factor.

. The form factor F'(q) is the Fourier transform of the charge distribution, satisfying

F(0) = Q.

What determines how fast the form factor goes to zero as a function of ¢7
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The nucleon-nucleon force

1.

2.

Discuss the main features of the nucleon-nucleon potential.

Deduce the possible J values that one can have for pp-, nn- and pn-pairs. Which
isospin states are allowed for these J values?

. Derive the relations between depth and size (without and with hard-core) of the

nucleon-nucleon potential in the zero-binding approximation for the deuteron using
a square well (without and with hard-core).

. What is the behavior of the tail of the nucleon-nucleon potential and which mech-

anism is responsible for this behavior?

The nuclear shell-model

1.

2.

What are magic numbers for nuclei and why are these different from the Z-values
for noble gases in atoms?

Determine the J"-values for ground states and excited states of nuclei using the
level structure of the nuclear shell-model.

Nuclear reactions and decay

1.

Give some examples of S-decay? Discuss for the case of an even A nucleus with
several stable isotopes the #-decay scheme.

. In atoms, the radiative transitions are dominantly E1l-transitions. Explain why in

nuclei also higher multipoles are important.

Given a groundstate and excited state of a nucleus, determine which electric or
magnetic transitions can occur.

. Why do alpha-decay lifetimes cover such a tremendous large range?
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PART C
PARTICLES

2.12 Introduction

In part A we have discussed some basic features of elementary particles. Observed ele-
mentary particles fall into three classes, hadrons, leptons and force-carriers (also referred
to as gauge bosons). Hadrons are composite and built from quarks. Quarks, leptons and
gauge bosons are (as far as we know presently) elementary.

ELEMENTARY PARTICLES COMPOSITE PARTICLES
spin interactions spin
strong | EM | weak
leptons (£, ) 1/2 no yes yes
baryons half-integer
_ (q99)
quarks (g,q) 1/2 yes yes yes resoms integer
(¢q)

electroweak no yes yes
gauge bosons (v, W*, 2°) 1

strong yes no no

(gluons)

The concept of a particle and unstable states

Particles that travel macroscopic distances are most easily to conceive. Tracks of electrons
or protons can be made visible in bubble chambers (used from the 1950’s to around
1980) relying for their operation on a superheated liquid, e.g. hydrogen or deuterium,
in which bubbles form along the particle tracks. The momentum can be determined
by embedding the whole setup in a magnetic field, in which charged particles describe
circular (or spiraling) orbits. Instead of the bubble chambers one nowadays uses many
other detecting techniques, e.g. wire chambers, in which induced currents indicate the
presence of charged particles. Often one has all kinds of detector elements specifically
aimed at certain particles, such as muons or photons. The key property of such a particle
is its mass, determined from a measurement of energy £ and momentum p via

M? = E? — p°. (2.68)

We will mostly set i = ¢ = 1, as discussed in part A. Keeping ¢ one would have M?c* =
E? —p?c?. The relation is valid in any reference frame. In the restframe one has E = Mc2.

In particle physics one often deals with extremely unstable particles, decaying in frac-
tions of a second. For particles living of the order of 7 = 1072 s the lifetime can still be
determined in a classical way, such as from the length of of a track within the detector
(cT &~ 3 cm). For particles that live much shorter (and we will see many typical lifetimes
of the order of 7 = 10724 s) this is impossible. In that case one employs the corresponding
energy uncertainty.
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Consider for this an unstable particle decaying into two other particles R — 1 + 2.
The probability P to find the particle R decreases in time,

P(t+dt)=P(t) (1-Tdt) = % = TP, (2.69)

where I' is the decay rate or decay probability per unit time. The solution is
P(t)=P(0)e Tt = P(0)e ", (2.70)

with 7 = h/I' = 1/T the lifetime. The quantity I is referred to as the width of a state.
Rather than a plane wave, the wave function of particle R is

[Wr(t)) oc e=t Pri=TRl2, (2.71)

at least for ¢ > 0. We can expand a decaying state in eigenmodes according to

. © dF ;
¢ i Ert-Trt/2 () — /_Oo = c(E) e P, (2.72)

and calculate ¢(F) in the following way

¢(E) = /0 di o+i(F-FrtiTr/2)t

. o0
_ —t +i(E—ER+iTr/2)t

E — Ep+ilg/2

0

7
= , 2.73
E — Ep+ilg/2 (2.73)

In the decay of unstable states R — 142 one thus has a transition amplitude proportional
to ¢(E; + E;) and a distribution of final state energy distribution in Ej, = E; + Ej
proportional to

1
I(E Ep)? 2.74
(E12) o |e(Er)|” o (Bn— En)’ + T5/4° (2.74)
‘O' Normalizing to the peak intensity, one finds
[2%/4
I(E) =1, x : 2.75
(F) °(E— Egp)?+T%/4 (2.75)
r It shows the reason for the name width. The quan-
tity ' is precisely the width of the peak at half-
maximum intensity, when plotting I as a function of

! | | | | the final state energy Ei5. The function is known as
Er E a Lorentzian or Breit-Wigner distribution.

The mass is an example of an invariant (the same in any reference frame) quantity for
one particle. The corresponding invariant quantity for two particles is

s= (p1+p2)? = (B + E2)* — (py + po)°, (2.76)
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referred to as the center of mass energy squared for the obvious reason that in the center
of mass (where p; + p, = 0) one has s = (E$5")%. The relativistic Breit-Wigner is found
by rewriting the above expression for I(FE) in the rest-frame of the decaying particle in
terms of the invariants, i.e. Fr = My and Ej5 = /s. One has

r2 /4
(Vs — Mg)* + T}/4°

which near resonance (s & M3) coincides with the (relativistic) Breit-Wigner

I(s) = I(Mp)

MET:
(s — MZ)? + MjI'y

I(s) = I(M3) (2.77)
If an unstable state has more than one decay mode, the initial equation 2.69 has more

terms each involving partial widths '}, that must be summed to find the total decay rate
I'r =Y, I'%, which determines the lifetime

If a resonance R is an intermediate state in a process a + b — R — ¢ + d, the cross
section near s = M%z behaves like
2 Pabyed
MEURTR
(s — MR)* + Mgl

o(s) (2.78)

Production of particles

Scattering processes in accelerators, or in particular in the early days in cosmic ray physics,
have produced many particles beyond the well-known nucleons (proton and neutron) and
electrons, e.g. muons or pions, shortlived resonances like the A-particle in pion-proton
scattering. With higher energies one produces particle-antiparticle pairs or the heavy
gauge bosons in eTe™ annihilation processes.

In accelerator physics one distinguishes fized target erperiments in which a beam is
aimed at a target and collider experiments. The (fixed) target in essence consists of stable
particles (protons, atomic nuclei or atoms). Note for instance that a neutron target
necessarily requires the use of nuclei, e.g. deuterium. As beams one has somewhat more
possibilities, e.g. electrons, protons, nuclei but also relatively short-lived particles such
as muons, pions or kaons, if they are produced with sufficiently large energies enhancing
their lifetime in the accelerator with the well-known factor v = E/M.

This same factor is responsible that muons (mass m, = 106 MeV and lifetime
7=22x107%s, i.e. ¢ = 660 m) produced in the upper atmosphere with energies
of several GeV’s can travel the tens of kilometers to the detector on Earth.

In collider experiments one collides two beams of particles. In high-energy experiments,
the produced final state particles in colliders have a more or less isotropic distribution
around the scattering point, while in fixed target experiments they are focussed in the
forward direction.

In general one specifies for an accelerator or collider the maximal energy via the
invariant s. For very high energies one easily can see that in a collider s ~ 4 E; Es,
while for a fixed target experiment one has s = 4 Miarget Fpeam (explain this!). Another
important property of an accelerator is the achievable flux factor, referred to as luminosity,
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the proportionality constant that relates the event rate (events/s) to the cross section,
R = Lo. Typical luminosities in present day accelerators are of the order of 1032 cm~2s71.
For the performance of an experiment or accelerator one talks of integrated luminosities,
e.g. in a certain period (say 10° s) one might achieve [ dt £ of about 103 ¢cm 2 = 100 pb 1,
implying 100 event over the integrated time interval for a cross section as small as 1 pb or
10% events for a cross section of 1 nb, but only 1 event for typical neutrino cross sections
of 1072 pb. Depending on the detection of the final state one distinguishes ezclusive
measurements in which the full final state is measured and inclusive measurements, in
which all final states are taken together.

Examples of specific scattering processes are socalled elastic scattering processes in

which initial and final state are the same,
a+b—a-+b,

(in particle reactions the + is usually omitted) yielding information on the forces working
between the particles, e.g. as we have seen in proton-proton scattering in section 8.
Knowing the forces for particle a, these processes can be used to study system b, for
instance knowing the electromagnetic interactions of the (elementary) electron, can be
used to study electromagnetic properties of composite particles via ep — ep, such as
the charge distribution in the proton. If the energy available is high enough, one has in
general many more inelastic processes,

a+b — a+? (excitation of b)
a+b — a+b+... (production of ...)
a+b — crdt... |

a+b — R—1+4+2 (resonance formation)

scattering into other channels)

a+a — ... (annihilation),

or combinations. Examples are resonance formation such as in 7*n — A"t — 7% and
7Tn — AT — 7n, production processes like pp — ppr®, associated production of two
strange particles 7 p — K X% (subsequently decays K~ — p 7, and ¥* — pr°) or
K p — A°7® (subsequent decay A — 7 p or A — 7'n). The annihilation process
ete” — ...is a particularly clean process to scan energy ranges and study new resonances,
or production thresholds e.g. ete™ — p* — 77~ and efe™ — ¢ — KTK~ in the GeV-
range or ete”™ — Z% — ... and ete™ — WTW ™ in the 100 GeV range.

For the understanding of these processes the conservation (or violation of conserva-
tion) for certain quantum numbers in going from initial to final state is an important
guide. Absolutely conserved turn out to be the total energy and total momentum. It is
important to stress that this is true for the initial and final state and not necessarily in the
intermediate state, where the energy uncertainty is related to the interaction time, such as
made quantitative in the above treatment of resonances. Conservation of energy requires
in a decay process a — 1+ 2 that M, > M; + M,, while for a + b — ¢ + d one must have
V8 > M.+ M. Note that because of energy and momentum conservation s can be calcu-
lated from initial or (full) final state, e.g. for ab — cd one has s = (p, +ps)* = (pe + pa)*
The minimal value for s in a particular reaction channel, s,,;,(cd) = M, + M, for the
reaction channel cd, is referred to as the threshold for this channel. Another quantity that
is strictly conserved in going from initial to final state is the total angular momentum
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J=L+8,ie. the quantum numbers J and M (eigenvalues J(J + 1)A* and MAh of J?
and J, respectively) are the same in initial and final state, where J and M are obtained
by combining all orbital angular momenta and all spins of the particles involved. Also
the total electric charge and the total number of baryons are conserved. In contrast, a
quantity like parity is not always conserved. This turns out to depend on the type of
interactions that are responsible for a particular process.

For plots of the cross sections and complete overview of particle properties we refer
to the Particle Data Review, which can be found at http://pdg.lbl.gov. A number of
particles, some properties and decay modes are listed below.

LEPTONS
name mass lifetime JY | main decay mode(s)
(MeV/c?)
e” 0.511 stable (> 4 x 10%* yr) | 1/2F
Ve <3x107" stable (see 17) 1/2
wo 105.7 T=22x10"%s 172 | p= — e Ty,
vy < 0.19 stable (see 17) 1/2
= 17770 | 7=029x10 Zs | 1/27 |7 = e mors (17.8 %)
T = v (17.4 %)
T = VTq-1/3]q[12/3]
(eg. 77 =TV, L)
Uy <18 stable (see 17) 1/2
MESONS (B = 0)
name mass lifetime/width JY | main decay mode(s)
(MeV/c?)
m* 139.6 T=26x10"s 0~ |7t = puty,
70 135.0 T=84x10"1s |0 0 — vy
MESONS (B = 0) continued
name mass lifetime/width J¥ | main decay mode(s)
(MeV/c?)
n 139.6 ['=12keV 0~ n— Yy
n — 70070
K* 493.6 T=124x10"%s |0 Kt — pty,
Kt — 7t7% and ntr o™
K} 497.7 7=09x10"0s |0 | K)—ar (rT7r and 7'7°)
K? 497.7 7=52x10%s 00 | Ky > mnm
o=, p° 770 [ =150 MeV 1~ p— T
w 783 ['=8.4 MeV - |w—atra°
é 1019 I = 4.5 MeV 1= | ¢— KK (K"K~ and K°K?)
D= 1869 T=11x10"2s [0~ |DF Kty ((=e,p)
DT — Kﬂ'g—i—l/g
Dt —» K nt
D, D’ | 1865 T=04x10"2s |0 | D" K ¢tu, Knlty, and K7
7/ 3110 [ =87 keV 1= | Jo =00 (=ep)
T 9460 I' =53 keV 1- YT =0 (b=e,p,T)
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BARYONS (B = 1)

name mass | lifetime/width J¥ | main decay mode(s)
(MeV/c?)

p 938.3 | stable (7 > 10%% yr) | 1/27
n 939.6 | T=2887s 1/2% | n — pe 7,
A 1116 T=26x%x10""s 1/2% | A —» N7 (pr~ and nn?)
»t 1189 7=08x107"%s 1/2% | ¥* — N7 (pr° and nn)
50 1193 |r=74x10"2s |1/2% |20 = Ay
3T 1197 T=15x10"1¢ /27 | X7 = nm—
=0 1315 |7=29x10 05 |1/27 | 20 = An?
= 1321 T=16x10"1g /27 | B = An—

A= . ATT[ 1232 | =120 MeV 327 |A = Nr
Q- 1672 | 7=08x10""s |3/2" | Q” - AK~, Z% and Xi 7°

Notes:
e Neutrino oscillations will be discussed in section 17.

With g[—1/5) and g /3 We indicate the underlying decay into quarks (¢) and anti-
quarks (g) with particular charges.

K™ and 7" also decay to e"v,, but with only a small fraction (~ 107%).

The kaon system will be discussed in section 6.5. The mass difference between the
physical states is Mk, — My, = 3.5 x 1072 MeV = 0.53 x 10" s7' = 1/(15.5 m).

2.13 Forces between elementary particles

Traditionally four types of forces are distinguished. Some general facts are summarized
in the following table.

FORCES

gravitation weak interaction  electromagnetism strong force
strength 10739 10710 1072 1
range o 1/r? 107¥ m o 1/r? 107 m
source mass weak charges electric charge color charge
carrier particle graviton w=*, 70 0% gluons
spin-parity 2T 1 1~ 1~
indirect forces - - van der Waals force  nuclear force
stable systems | solar system, ... - atom, molecule proton, nucleus

The interactions in the domain of subatomic physics are described via the exchange of
spin-1 particles. The example of electromagnetic interactions has been discussed in the
sections on nuclear physics (part B). There, it was compared with the exchange of pions
producing the nuclear force. We will see below how this latter force actually arises as a
derivative of the true strong force, which is mediated by gluons.

Also the weak interactions are mediated by spin-1 particles, but these bosons are very
heavy (on the scale of the nucleon). For instance, the Z%boson is exchanged in the case of
a neutrino interacting with a proton. The basic interaction strength, the coupling, for the
weak interactions is actually comparable to the electromagnetic interactions, but the fact
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that the exchanged particle is heavy, Mz ~ 91 GeV/c?, makes the interaction extremely
short-ranged (X7 = 0.011 GeV™! ~ 2.2 x 10718 fm).

V
v 7 ) g

? : 0% e

exp (=7/Az)

= V(r) ~ ahc

One immediately sees in the cross section, which is proportional to [V (q)|? the appearance
of a factor 1/Mj3. Comparing this with the typical mass of the hadron used in the
scattering process, gives a factor (My/My)* ~ 108, Together with phase space factors,
this leads to characteristic neutrino-nucleon cross sections, which are of the order of 102
pb, indeed roughly 8 orders of magnitude weaker than characteristic electromagnetic cross

sections.

Gauge theories for electromagnetic and strong forces
Electromagnetic interactions

Without going into technical details (for which one needs methods from quantum field
theory), we state the important ingredients in the diagrammatic approach (Feynman
diagrams) used to describe the interactions, the propagators and the interaction vertices.
We will focus on the interaction terms. In QED we have seen the the interaction term

e
e \ e

e
E — Hy = — efQer. 2.79
t e e'Qey ( )
Y

The interaction term contains the coupling constant, the charge operator @) (e.g. giving -1
for an electron) and fields for the various particles, here just represented by the particle’s
name. The fields are in essence a sum of annihilation operator for the particle and the
creation operator of an antiparticle, i.e.

e <— annihilate a particle
or
create an antiparticle
el «— create a particle
or

annihilate an antiparticle

The interaction term thus incorporates not only the absorption and emission of a photon
by an electron, but also the annihilation of an electron and its anti-particle, the positron,
into a photon, the creation of an electron-positron pair out of a photon and the absorption
and emission of a photon by the positron, in total six possibilities:
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(Note that to keep track of particle or antiparticle nature one uses an arrow on the
particle’s line).

The strong interactions

The strong force, at the elementary level acting on quarks and gluons, is of the same
nature, except that the charges are of a different type. We have already seen (part A)
that quarks come in 3 colors, which we group together

qr
q= qq
[

Instead of having many type of couplings, one for each q;' g; G, vertex, involving a quark
with color 7 a quark with color j and a gluon of type a, each with its own particular
strength, these couplings obey an underlying symmetry, [in group theory language de-
scribed by SU(3), the unitary transformations among the three colors]. There is in fact
only one coupling constant g,. All relative couplings are determined by the requirement
that transformations in color space do not alter the theory, the gauge principle. This
leads to strong constraints on the interaction term.

?/s/ The exchange of gluons between colored quarks
quark gluon underlies the strong 1njceract10ns. All Pos&.ble
quark-quark-gluon vertices are summarized in

\\
quark,” s Hi = 950} (Fu)ijg; Gay  (2.80)
The charge operators (Fy);; form just the set of (eight) hermitean matrices in color space
[corresponding to the generators of the SU(3) symmetry].

The eight hermitean matrices in the 3-dimensional color space are just the extension
of the three hermitean matrices in the 2-dimensional spin space, where one has S
= o/2 with

L _f01 I I b1 0
Y1l1o0]) 27 1éi o) 2 o -1]"

satisfying Tr(o;0;) = 2 6;;. For the 3-dimensional space one has 8 hermitean matrices

F, (a=1,...,8) which are written as F,, = A,/2, known as the Gell-Mann matrices,
010 0 —2 O 1 0 O
AMM=1]1100 =17 0 0 AM=1]0 -1 0
0 00 0 0 O 0 0 0
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(0 0 1 00 —i 00 0
M=[00 0 Xs=|00 0 Xe=|0 01
(100 i 00 010
(0 0 0 L (1000
Ar=1]0 0 —i d=— 01 0
L0 i 0 V3o 0 —2

which satisfy Tr(AgAp) = 2d4p. For the quarks, coming in 3 colors and coupling to
8 gluons, these eight matrices are precisely the ones fixing all the relative 8 x 3 x 3
couplings (55 of them being zero!).

An important difference between QED and QCD is the nonabelian character of the latter.
In a nonabelian theory the charges (matrices!) do not commute. Without going into
the details, we also mention that this has the important consequence that the gluons
themselves carry a color, which means that they can interact with themselves, i.e. there
exist vertices connecting three gluons G,G,G..

In part A we already discussed that there exist six kinds of quarks, referred to as fla-
vors. All flavors couple to gluons with the same strength, in other words gluons are flavor-
blind. The production of the various flavors in an electromagnetic interaction can actually
nicely be seen in electron-positron annihilation and the subsequent quark-antiquark cre-
ation. One can have

ete” = ete”, utp, 7717, wa, dd, ss, cc, bb, tt.

The ratio
o(ete” — hadrons)

R =
oletem — ptpu~)

(2.81)

where the cross section into hadrons is initiated by the creation of a quark-antiquark pair,
nicely shows jumps corresponding to thresholds where the next quark flavor comes in.

Ree A schematic representation of the
4+ expected behavior of the ratio R
| 2mg —— in eTe~ annihilation is given in the
{ ! figure. The physical thresholds are
2 ”_l—$ 2my, of course determined by the lowest
+ two-meson or baryon-antibaryon
2M¢ threshold containing the indicated

1 10 ES (Gev) quarks.

The ratio R turns out to be well reproduced by the incoherent sum of contributions,

R=3) ¢, (2.82)
q

where the sum depending on the energy runs over quark flavors that can be produced.
The factor 3 is a consequence of the fact that there are 3 colors. The quark-antiquark
pair can be produced in any of the color combinations 7, bb and gg.
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2.14 Electroweak interactions

The weak interactions, mediated by heavy gauge bosons, can be considered in a unified
framework together with the electromagnetic interactions in a way similar to the color
interactions. In essence all coupling constants are related via symmetries.

2.14.1 Leptons and electroweak interactions

Leptons only experience electroweak interactions (and gravity via their masses). They
do not feel strong interactions. Leptons are fermions with half-integer spin. We will
consider two particular choices for fermions, helicity states and chirality states. Choosing
the momentum direction as quantization axis fermions can have two possible helicities

a=S5P_ 4L (2.83)
|p| 2

A particle with spin along the momentum has positive helicity, with spin opposite to the

momentum negative helicity. Helicity is a property that can be measured, but depends

on the observer. It is not an intrinsic property of particles except for a particle without

mass. In that case, positive and negative helicity coincides with socalled right-handed and

left-handed chirality states for fermions.

S=—(7—»1p R
A=—1/2 A= +1/2
! !
lefthanded righthanded (for massless particles)

Chirality is an intrinsic property of fermions, also for massive fermions, such as electrons
or muons and plays a crucial role in the weak interactions, which behave different for
righthanded and lefthanded states, e.g. ey and e;. Neutrinos even only appear left-
handed, while antineutrinos only appear right-handed. All the interactions of fermions
with spin-1 particles do not change chirality, but they can change helicity. In order to
expand chirality states into (physical) helicity states one needs the overlap factors,

L+v(1+8) 41 148
(LA =—1/2) = (R]\ = +1/2) = —— -T2 >l 278 Aol g
2/7(v+1) 2
(LA =+1/2) = (RA = —1/2) = L2028 ooy 128 gy

2/v(v+ 1) 2

The latter factor can also be expressed as (L|A = +1/2) = M/(VE(VE + M+vE — M)),
showing that for M = 0 chirality = helicity. The factors explains why the decay of a 7~
into e” 7, is heavily suppressed with respect to the decay into =7, (see exercise 6.2).
The electroweak interactions are also of the gauge type discussed before, but one needs
a 2-dimensional space (referred to as weak isospin) and an additional quantum number.
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In group theoretical language the symmetry is referred to as SU(2)y ® U(1)y (W stands
for weak isospin, Y for weak hypercharge).

The basic expression for the interaction term can be written in a fairly simple way
as interactions of fermions with three W-bosons via three weak-isospin operators T and
with one B-boson via a socalled weak hypercharge operator Yy .

S e YW The corresponding interaction terms are

Cos ew written

Hiw = oo [T W f*—Wf
@w

The key issue is that different partlcles such as neutrino’s and electrons are considered as
one fermion with different electroweak charges. To be precise the lefthanded electron and
the neutrino (only lefthanded!) form a doublet, while the righthanded electron forms a
singlet. This same structure repeats itself three times for the different lepton families,

L=[V6_L],[V“_L],[VT_L]; R=¢eg, ug, Tg- (2.85)

€r My, L

The weak-isospin operators for the doublets are the hermitean 2 x 2 matrices, T = /2
(with 7; being the Pauli matrices),

(13 o= [05) w3 0)
1 0)° i 0 )7 0 -1 )°
The treatment of doublets is completely analogous to spin. The doublets are assigned a
weak-isospin quantum number 7" = 1/2, the members of the doublets are eigenstates of
T3 (diagonal matrix) with quantum numbers T3 = +1/2 and T3 = —1/2, respectively. For
the singlets, one can (like spin) also write down the weak-isospin operators but they are
trivial,

Th=(0), Tn=(0), T3=(0),

implying for the singlets T'= T3 = 0. For doublets and singlets, the weak hypercharge is
a diagonal operator, of which the value can be calculated via

Q:g+%& (2.86)
The fact that lefhanded particles form doublets and righthanded singlets, implies e.g.
that the W-bosons only interact with lefthanded particles, which means mazximal parity
violation.
For antiparticles one has opposite quantum numbers. The righthanded antileptons
belong to doublets while the lefthanded antifermions are singlets, i.e. we have

+ + +
€r Hr TR T i
— . . ; er, , TP . 2.87
[VBR] [V,UR] [VTR] Lo Moo T ( )

In the same way as the full rotational symmetry for a collection of spins in a cristal can
be spontaneously broken when all spins (for whatever reason) align, nature has choosen a
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symmetry breaking mechanism for the weak interactions with only one surving symmetry
[referred to as SU(2)yw ®U(1)y —> U(1)g]. The operator corresponding with the surviv-
ing symmetry is precisely the charge operator @) related to T3 and Yy via Eq. 2.86. The
gauge boson coupling to the charge operator in the hamiltonian is (of course) our photon.
This requires a redefinition of the B and W gauge bosons. Using, instead of these bosons
in Eq. 2.84 the linear combinations,

w* = 7 (W1 +1W5), (2.88)
Z=c OW W3 — sin HW B, (289)
Y= sin HW W3 —+ cos ew B, (290)

Eq. 2.84 becomes

(&

sin 0W \/§

e

Hing (FITef W™+ FITf W)

o [T - Qsin’ b | [ Z+ e f1QF v, (291)
sin Oy cos Oy

where T, = T} £+ 1+ T, are weak-isospin raising and lowering operators. The first line in
this interaction hamiltonian is known as charged current interaction, the second part as
the neutral current interaction. The interaction vertices for the electroweak part of the
standard model can now be read off after just inserting the lepton doublets and singlets.
E.g. for the doublet the first term explicitly contains

[ vl (eZ)T] 01 Ve
fiT fw- = W~ =vle, W,

Pictorially, we have

2 sin aN sin ew cos By [T3 Qsin’ 6y

Note that, just as in the case of the ee7y vertex, each diagram actually represents a large
number of possibilities, e.g. for the first vertex

244



For the antiparticles one has

As discussed the interactions felt by the leptons can change the nature of the lepton,
in particular one can have v, — e~ W™, which has been incorporated as a change of weak-
isospin 73. There are, however, no transitions that change particles of one family into
those belongng to a different family, e.g. in the decay of the 7~ -lepton always a v, appears.
To incorporate this one has introduced quantum numbers L., L, and L., called lepton
numbers, that must be conserved (note that anti-leptons get opposite lepton number).
The exchanged W ~, however, couples with the same strength to particles of any family,
known as universality of the electroweak interactions. E.g. the decay probabilities of the
T into an e~ and a p~ are about the same. The remaining differences can be explained
by the phase space.

Dating back to Fermi, one used to introduce for the weak interactions a four-fermion
interaction. We now can easily understand the origin of this. Look at the muon decay. It
is described by the left diagram below, but at low energies, where 1/(q*+ M3,) — 1/M?%,,
it is not distinguishable from a four-fermion interaction,

. A e — p_ e
Ve
Ve
e? 1
2 sinZ 6y W} pe) pE VN (eive) = Him=2V2Gr W} ) (e} ve), (2.92)
w
with o )
F €
—_—_ = 2.93
V2 8sin’fy M, (2.93)
The numerical values of G and Oy are
Gr =1.16639(1) x 10°° GeV 2, (2.94)
sin® Oy, = 0.231. (2.95)

Actually, the weak mixing angle plays also a role in the masses of the gauge bosons. The
combination forming the photon is massless, while a relation between the heavy boson
masses is found,

My
cos? Oy

M2 = (2.96)
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We end this paragraph with a summary of the gauge bosons that are exchanged and which
themselves also carry electroweak interactions, an important property of nonabelian gauge
theories such as those based on the symmetry groups SU(2) and SU(3). For instance the

ELECTROWEAK GAUGE BOSONS
gauge mass width
boson | (GeV/c?) | (GeV) | decay modes T Y,
0% 0 00 0 0
ZY 91.188 2495 | Z = L0~ 0 O
Z —=q+q
W= 80.4 212 | Wt = (ty, +1 0
W — qrro/31011/3

WTW—Z" vertex has strength e cot fy, while the W W~ has the (expected) strength e.
The vertices of W- and Z-bosons to leptons provide also their dominant decay channels,
e.g. the leptonic decays Z° — ¢4~ for £ = e, u and 7. Since their masses are (compared
to the Z%-mass) irrelevant, these decay modes have exactly equal widths (universality).

2.14.2 Quarks and electroweak interactions

The main interactions for quarks are the strong interactions, which we will discuss in the
next section. They, however, also interact electromagnetically and weakly. The latter
actually determines their lifetime and that of the hadrons built from them.

For quarks, one has, just as for the leptons, that the righthanded quarks (ug, dg, etc.)
are weak isosinglets, 7' = 0, while the lefthanded quarks can also be grouped into doublets

with T = 1/2,
Ur, Cr, tL
d, Jols, ) Lo )

The states that are relevant for weak interactions, however, are not the (dominant)
strong interaction eigenstates but combinations. The mixing is described by the (uni-
tary) Cabibbo-Kobayashi-Maskawa matrix,

(2.97)

dl Vud Vus Vub d
S’ = V;d V;S V;b S (298)
v Vie Vis Va b

In a two-family world, for which the mixing was first suggested by Cabbibbo, the matrix
would be determined by one angle, referred to as the Cabibbo angle,

d) _ d

s ) s )
This matrix e.g. implies that, using g = e/sinfy,, the vertex s — u + W~ has strength
(9//2) sin ., while the vertex d — u+ W~ has strength (g/+/2) cos .. The latter vertex

is needed in neutron B-decay. Note that in a unitary 2 X 2 matrix the entries can always
be made real by absorbing complex fases in the two states. For a 3 X 3 matrix, the third

sin 6,
cos 0,

cos 0,
—sinf,

(2.99)
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state can be used to absorb one additional complex phase. However, one complex phase
remains, showing up in some of the matrix elements. This phase allows CP-violation in
the quark sector, which we will discuss in a later section.

The magnitudes of the entries in the CKM-matrix are nicely represented in the a
socalled Wolfenstein parametrization

— 3\ A X A(p—in)
V= ) 1-1x a4
NMAQ—-p—in) =-X2A 1

with A = 0.24, A ~ 0.84 and p = 0.2 and n = 0.3. The imaginary part i7n gives
rise to CP violation in decays of K and B-mesons (containing s and b quarks,
respectively).

Just as for leptons, we thus have for quarks interaction vertices of the following type:

eVud
Zsmew sma,\,cosa,\,[T3 Qsin”6w] eQ

S R

These underly interactions like neutron decay, n — pe 7, or v,n — e p, a process with
extremely small cross section which nevertheless is very important in measuring the solar
neutrino flux.

d — ue 7, Ved —> €U

Summary of quark properties

We have now sufficient information to give an overview of the quantum numbers of all the
quarks. As mentioned already, the different types of quarks are referred to as flavors and
flavor quantum numbers strangeness (S), charm (C), bottomness (B) and topness (') are
assigned. Since the interactions of the gluons are blind for flavor, flavor quantum numbers
are conserved in strong interaction processes. But as discussed above the weak interactions
allow the decay of quarks and can change flavor quantum numbers. The masses in the
table are socalled constituent masses that used linearly give a rough indication of the
masses of the hadrons formed from the quarks. Also the lifetimes are only indicative for
the lifetimes of hadrons containing the respective quarks. Note that the top quark decays
(although through weak interactions) in such a short time that formation of hadrons is
irrelevant. By the time the quark decays, a region with a radius less than 1 fm knows of
its existence.
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QUARKS
mass lifetime isospin ‘
quarks | (GeV/c?) (s) decay modes | [ I3 S C B T
u 0.35 u—detv, |1/2 +1/2 0 0 0 0
d 0.35 d—ue v, [1/2 =1/2 0 0 0 0
S 0.5 ~ 10710 s —udu 0 0 -1 0 0 0
S—ue TV,
S—=up vy
c 1.5 ~1072 |c—sud 0 0 0 +1 0 0
c—set v,
c—spty,
b 5.0 ~ 10712 b—cdu 0 0 0 0 -1 0
b—ce 7,
b—cp 7,
b—cp 7,
t 174 ~H5Xx107% |t = bWT 0 0 0 0 0 +1

2.15 Hadrons

Strong interactions at the microscopic level are mediated by gluons. Although the strong
interaction resembles the electromagnetic interaction, mediated by the exchange of pho-
tons, an important difference is the possibility that gluons exchange gluons among them-
selves. One consequence that has been found is that there is an important difference in the
strength of the elementary coupling in different energy/momentum ranges (or equivalently
different length scales). While @ = e?/4m becomes actually stronger at short distances,
the strong coupling constant a; = g2/4m becomes weaker, known as asymptotic freedom.
Catastrophe at large distances is avoided by confinement of color charge over distances
larger than about 1 fm. The corresponding energy scale is 200 MeV. From the excitation
spectrum of mesons built from light (u and d) quarks, one obtains for the long-range tail
of the quark-antiquark potential,

Vi) = Tor (2.100)

with Ty ~ 0.9 GeV/fm = 0.18 GeV?. The short-distance behavior looks much more like
a Coulomb potential. We will see this when we consider bound states of heavy quarks.

Color singlets

The long-range behavior of the potential between color charges forces the formation of
color neutral bound states. How to neutralize color. First consider the case of two colors
which may be compared with spin quantum numbers. Neutralizing ’spin’ can be done by
pairing two spin 1/2 particles to a spin 0 object, taking the antisymmetric wave function
(14 — 41). The charges of the quarks come in 3 colors and they can actually be neutralized
in the same way by taking the antisymmetric combination

1

|color singlet) = 7 (rgb— grb+ brg — rbg + gbr — bgr) . (2.101)
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Vo - v~ Ur The potentials in QED
. and QCD at short and
5 5y large distances, respec-
VO-r \
permanent
short large confinement of
distance distance colored quarks

Such a color singlet wave functions requires three quarks to join. These ggq bound states
are referred to as baryons. A second possibility to make color singlets is to join the color
of a quark and the anticolor of an antiquark?®,

1 —
|color singlet) = —= (r? + 99 + bb) . (2.102)

V3
The ¢g bound states are referred to as mesons. Taking away a quark from a baryon would
result into colored states, but at the same time creating a quark-antiquark pair leads to
the emission of a meson

B = (qqq) — (99 — —q) — (9q9 — q9 — q) — (qqq)(qq) = BM,

e.g. the (effective) NN vertex used to describe the nucleon-nucleon force (section 8).

In building hadrons one can combine quarks of any flavor. The color forces are identical
for all flavors. In particular for the two lightest quarks, which have masses very much lower
than the typical QCD scale of 200 MeV, this naturally leads to treating them together,
i.e. considering v and d as two isospin charges of a quark. Sometimes this is even useful
including the third flavor s.

Light hadrons

For building baryons one must combine three quarks of any flavor. Doing this for the two
lightest flavors, up and down, it is extremely useful to do this via the assignment of isospin.
Since the role of the two lightest quarks is identical as far as the strong interactions is
concerned, the isospin symmetry will be important in the spectrum and the interactions.

3Note that in a world with two colors the anti-color would be just the other color. This is not true
in the case of three colors. In that case the anti-color is like the antisymmetric combination of the two
other colors.
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The two nonstrange quarks are as-

q{ 9 : l.J signed isospin I = 1/2 (as for spin
-1/2 0 1, I(I +1) is the eigenvalue of I?), for

which we have two states with different

N [u.d] . I, values. Just as for spin, the isospin

-1 0 1 I, doublets can be coupled for a ¢g-system

qq to I = 0 (antisymmetric wave func-
(d.d) } (u.d) } (u.u) tion, denoted by brackets [ud]) or I =1

-1 0 1 I, (symmetric wave function, denoted by

(ud)). For a three-quark g¢gg-system,

o U(id | Ul:d o the isospin can be I = 1/2 or I = 3/2.

3 12 12 3P l, The isospin 1/2 combination can be

qqq obtained in two ways (via 0 ® 1/2 or
(ddd) (udd) (uud) (uuu) 1 ® 1/2), the isospin 3/2 can only be

_3:2 | _1./2 | 1./2 | 3./2 l, obtained in one way. It is a fully sym-

metric wave function.

To get the full baryon wave functions, one must combine the isospin wave functions with
spin, color and spatial wave functions. The color part is simply the antisymmetric wave
function discussed before; this is the only possibility! For the ground state baryons, the
most obvious spatial wave function is a full S-wave, no orbital angular momentum. So
let’s try that. Since the color wave function is antisymmetric, the spatial wave function is
symmetric, the isospin-spin part must be symmetric. For the symmetric isospin I = 3/2
state, this implies a fully symmetric spin wave function, i.e. S = 3/2. To be explicit one
has a uuu-state with all spins parallel, which is the M; = +3/2 and Mg = +3/2 member
of a particle multiplet, known as the A-resonance,

A?—S_:=+3/2) = UUtU4 02 wcolor &® wspace- (2103)

From this A state with I, = S, = +3/2 the other members of the multiplet are ob-
tained with isospin and spin lowering operators. The experimental existence of this state
indicated the necessity of an antisymmetric (three)-color wave function.

To get the wave function of the nucleons one can start in various ways, e.g. take an
I = 0 isospin [ud] wave function, combine it (necessarily, why?) with an S = 0 spin [1]]
wave function. Combining with e.g. an uq-quark, we get after symmetrization the proton
wave function (for Mg = +1/2),

1
Ps.=11/2) = \/—1_8(2 upurdy + 2upd ur + 2 dyusuy — wpuydy — uyurdy — updyuy
- U,idTuT - dT“TW - dTuiuT) X wcolor ® @bspace- (2104)

Including the strange s-quark, one constructs SU(3)r (F for flavor) multiplets. Starting
with the quarks and antiquarks one has the basic multiplets 3 and 3*, given in a plot of
Y =S + B versus I,, where B is the baryon number, being 1/3 for a quark.
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d Yy s
| ; ; | _1\/2 | 1\/2 IZ
—1/2Y 172 I, -L%
S u T d
-1 -1
quarks anti—quarks

One can construct 9 gg-states, 3 antisymmetric ones (forming again a 3* triplet) and 6
symmetric ones (forming a sixtet 6).

Y Y
[ud] (dd) ~ (ud)  (uu)
1 X ¥ \ 1 i 1 / I,
.
[dS] + [us] (ds) us)
(ss)

Combining these states with another triplet leads to 27 states, but after symmetrization
including spin wave function one is left with a symmetric decuplet (10) with s = 3/2 and
a mixed-symmetric octet (8) with s =1/2.

ddd

baryon
decuplet
octet baryons (s = 1/2) (s=3/2) Q-

For the mesons one has ¢q states without restrictions from the Pauli principle, yielding
two nonets, one with s = 0 and one with s = 1.

ds

K-
pseudoscalar nonet (s=0)  vector meson nonet (s = 1)
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Examples of quarkline diagrams. In

l—al} o these diagrams showing the gluons which

are exchanged between quarks would not

md make sense. These do not only play a

{ ++ H} P role in the scattering process, but also in

the existence of the hadrons themselves.

Processes like the upper one, are strong

{ interaction processes, the second example

shows a weak process. Here a W is ex-

changed and produces a quark-antiquark

pair. The quarkline diagram immediately

shows the nonconservation of flavor quan-
tum numbers in weak processes.

Although a nonet mathematically can be split into an octet and a singlet (the latter with
wave function (u@ + dd + s5)/+/3), this splitting may not be the one that is physically
most relevant. While in the s = 0 nonet the 7/(938) has a wave function that is close
to the singlet, one has in the spin s = 1 nonet the situation that the physical states are
much closer to what is referred to as ideal mixing in which quarks with the same masses
combine. The flavor parts of the wave function become

P = % (v — dd), (2.105)
w = % (wa + dd) (2.106)
¢ = s3, (2.107)

where for the light v and d quark-antiquark pairs the w-meson is the isospin I = 0 state.
Ideal mixing is a natural consequence of the mass difference between s-quark and light u-
and d-quarks. Already in the 1950s several of the above hadrons had been found. Often,
they were produced in pairs, socalled associated production, e.g.

™ p— AK° (2.108)
followed by a decay in one of the in general many modes, e.g.

pT
n°

pe v

Associated production was ’explained’ with a new quantum number strangeness, with the
A-particle having S = —1 and the kaon having S = +1. In the quark model this quantum
number arose naturally as the identity of a third quark that was needed in addition to
the nonstrange up and down quarks. The lambda is a baryon containing the s quark,
the kaon a meson containing the 5 antiquark. The creation of a quark-antiquark pair is
a strong interaction process (conserving strangeness), while the decay is a weak process
involving e.g. the weak decay of the s-quark,

5 — ue v, (2.110)
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This explained why these abundantly produced particles live for such a long time (75 =
2.6 x 1071 s) compared to the short lifetime of e.g. a (nonstrange) A-particle, which
immediately decays again,

7tn — AT — 7%, (2.111)

and only shows up as a resonance with a half-width I'n = 120 MeV, corresponding to a
lifetime of 7o = h/T'a = 5 x 1072 s.

Masses of light hadrons

A rough estimate of the masses of the light baryons and mesons can be obtained by adding
contributions of the various quarks. This works because for the light hadrons the sizes
(determined via elastic scattering, in which one obtains the (squared) form factors) turn
out to be roughly the same, about 1 fm, which is the characteristic distance connected with
QCD. Light hadrons form sort of bubbles within which the quarks are more or less free.
The momentum of a quark confined in such a cavity is proportional to pquark < 1/R with
the proportionality constant ranging from 2.04 for a massless quark (for this one needs
the Dirac equation) to m for a heavy quark (this is the well-known quantummechanical
result following from sinpR = 0). Even with almost massless quarks a contribution per
quark of about 360 MeV is obtained, referred to as the constituent quark mass. The
actual masses of the up and down quark turn out to be around 10 MeV, but because
of the large momentum (o< 1/R) their precise mass is for the masses and properties of
hadrons not very relevant. This and the fact that the basic strong interactions (gluon
exchange) are identical for u and d quarks leads to isospin symmetry. A consequence is
the appearance of particles in isospin multiplets, of which the members have roughly the
same mass. The small mass differences between members of the same multiplet, e.g. the
proton and neutron or the pions, M+ = 139.6 MeV and M,o = 135.0 MeV are attributed
to small effects like the differences between up and down quark masses and electrostatic
contributions of order €?/4mey R.

The strange quark mass contributes about 500 MeV towards hadron masses. The
difference of about 150 MeV per strange quark is clearly seen in the masses of the de-
cuplet baryons, which show a remarkably equidistance between the isospin multiplets
A(1232), ¥*(1385), =*(1530) and 2(1672). Masses are given in MeV between brackets.
This mass equidistance was actually what led to the prediction and discovery of the (2~
baryon. Looking at the differences between the nucleon doublet N(939) and the A(1232)
quadruplet one sees the spin-spin force at work. A pairwise interaction of the form

Qs

Hint X — Z(E . F})(O’Z . O'j), (2112)
R i>]

turns out to work very well, splitting not only the s = 1/2 and s = 3/2 baryons (Mx —
My =~ 300 MeV), but also the s = 0 and s = 1 mesons (e.g. Mg~(s92) — M (a96) = 400
MeV).

If one would replace in the color-hyperfine interaction in Eq. 2.112 the color charges
(F; - F;) by ordinary electric charges e; e; one would get wrong results for the baryon and
meson splittings, giving another argument for color. While the p(770) and w(783) are
nearly degenerate, the A(1116) and X(1192) baryons have an appreciable mass difference
of 76 MeV. This indicates actually that Eq. 2.112 needs refinements depending on quark
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3 s=3/2 A=42 Splitting caused by the interaction proportional to
i I N A

S s=1/2 A=—o i>j

for mesons (¢q) and baryons (¢%). To derive the

values of A one just calculates from the Gell-Mann

= _s=1 A=4/3 matrices that for one quark F; - F; = 4/3. Using

ﬂ (Fy+ F;)* = 0 one finds for a meson F,- F; = —4/3

and using (F} + F»+ F3)? = 0 one finds for a baryon

_ F;-F; = -2/3. Furthermore one has o, -0; = +1 for
\_8=0 A=-4 s =1 and -3 for s = 0.

masses. Note that in a A baryon, the isospin I = 0 implies an antisymmetric [ud] wave
function for the nonstrange quarks and hence also an antisymmetric [1]]. The spin of the
nonstrange quarks combines to zero and thus the spin of the A is carried by the s-quark.
For the ¥ baryons, however, with I = 1 one has a different situation with symmetric
isospin and spin wave functions for the two nonstrange quarks.

s=3 The color-hyperfine splitting discussed above, actu-

ez A=4 ally also gives a qualitative explanation of the hard

6 e A=2 core in the NN interaction. Unlike for the case of

g S= g A=2/3 ¢q and ¢>, one has for six quarks always a repulsion,
L S=

irrespective of the spin and isospin.

Properties of light hadrons

In the sections on nuclei we already discussed the charge distribution for the proton,
obtained from the form factor, for instance measured in elastic electron-proton scattering.
The electric form factor of the nucleon is very well approximated by a dipole form factor,

1

N ik

(2.113)

indicating an exponential charge density with charge radius (/(r?)p =~ 0.8 fm. In such
experiments one has also determined the magnetic moments of the proton and neutron and
found the g-factors deviating strongly from the value of an elementary fermion (g = 2),
namely g, ~ 5.586 and g, ~ —3.826. Assuming for up and down quarks a magnetic
moments of the form

B =26 [y S; = € [y O, (2.114)

and using the proton and neutron spin wave functions to obtain the expectation values
(p,s, =+1/2| Zei Oizlp, s, = +1/2) =1,
i

(n,s, =+1/2| Zei Oizln,s, =+1/2) = =2/3.
i
one obtains g, = 2 pun/p, and g, = (—2/3) gp, indicating that u, ~ 2.8 py. Writing p, =
eq/2m, this implies a mass m, ~ 340 MeV, in good agreement with the beforementioned

constituent mass (see Exercise 6.5).
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Hadrons in high-energy scattering processes

The quark structure of hadrons has been confirmed and studied in scattering processes
and becomes in particular evident at high energies, where high means sufficiently large
as compared to the QCD scale. In fact, high-energy scattering experiments in which
the total center of mass energy /s ~ 50 — 100 GeV or higher, the initial stages of the
production of hadrons,

efe” — qg (quark-antiquark),

— ¢¢G (quark-antiquark-gluon),

remains visible in the distribution of final state hadrons, which appear as showers of
hadrons peaked along the high momenta of the initiating processes, socalled jets. Also
for the decay of an in the intermediate state produced resonance such as the Z° one
can clearly distinguish the isolated tracks of ete™ or ptpu~ pairs from hadronic channels
initiated by ¢g pairs. Missing momenta in these processes indicate neutral or (almost)
non-interacting particles like neutrinos.

Another important class of processes are those involving a hadron, in practice mostly
a proton, and a lepton. The lepton does not feel the strong interactions and interacts
via electromagnetic or weak interactions directly with the quarks in the proton. This
can be used to probe the quarks and from the scattering angle of the lepton also the
momentum of the struck quark (in fact the fraction = of the proton’s momentum carried
by the quark). For example, electron-proton scattering,

e + p — € + anything,

is an electromagnetic process in which a photon with momentum ¢ = &, — k. is exchanged.
When this exchanged momentum (more precisely the squared momentum |¢?|) is large,
the cross section is found to be dependent on only one variable, the Bjorken scaling
variable z = —¢?/2P - q (where P is the proton momentum). This can be understood as
a consequence of independent scattering off the proton’s constituents. One derives that
the cross section can be expressed in terms of quark and antiquark distribution functions
q(z) and q(z),

o(P,q) o Y_ej (q(z) +q(2)). (2.115)

q

For this one needs that the underlying process is v + quark — quark, for which the
cross section would simply be proportional to the quark charge squared, 0% eg. One
introduces quark momentum distributions f,(x) or short ¢(z) and similarly g(z) for each
of the (anti-)quark flavors (u, d, s, etc.), where the z is the quark momentum’s fraction in
the proton, £ = x P. The ep cross section is then obtained by folding the eq cross section
with the distribution functions. Using the fact that the scattering off a quark is elastic,
i.e. k* = (k+q)? thus 2k- ¢+ ¢* = 0 and inserting k = x P one finds that the momentum
fraction is, indeed, identified with the Bjorken variable . By using different probes, such
as neutrinos, which via W-exchange only scatter off negatively charged (anti-)quarks or
antineutrinos, which only scatter off positively charged (anti-)quarks one has been able
to determine the quark distributions in a nucleon, showing that for small momentum
fractions, there are actually many antiquarks, but such that e.g. obvious sumrules like
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fy dz (u(x) —u(x)) = 2 hold. By looking at the cross sections in more detail, in particular
scaling violations, one has also found evidence for gluons. For instance the momentum of
quarks and antiquarks together only gives >, [dz (q(z) 4+ q(z)) ~ 0.5, the other 50 %
being carried by gluons.

Heavy quarks

For heavy quarks the mass spectrum naturally separates into sectors containing one heavy
(anti-)quark, two heavy (anti-)quarks, etc. Taking the charmed c-quark as an example,
one finds C' = 1 mesons with spin 0 and spin 1, by combining the heavy quark with the
light antiquark-triplet. One finds the D(1867) and D,(1968) pseudoscalar (s = 0) mesons
and the D*(2008) and D?(2112) vector (s = 1) mesons of which the quark structure is
found by combining the antiquark 3* triplet with the c-quark.

Y Y

D;- cs DQ* cs
| 1 | I Z | 1 | I Z
cug cd cu  ycd

D% + D7 D+ pO*

s=0 s=1

The masses are a way to obtain an indication for the c-quark mass given in the quark
summary table. The lifetime of the D and D, mesons is of the order of 1072 s reflects
the c-quark lifetime before its weak decay. As can be argued from the weak interaction

vertices given for the quarks, the ¢ — s transition is the preferred one, leading to kaons

in the final state.
Similarly the two-quark diagrams for up and down quarks discussed before can be
used to obtain the structure of C' = +1 baryons,

or C = +2 baryons.

—+ Y _ 4+ Y e+
—cc —cc —cc —cc
dcc'ﬂ 7' ucc dcc, , ucc
T |, T z
s¥2& sce QC:
s=1/2 s=3/2
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Of course, there is also a C' = +3 baryon, necessarily only with s = 3/2, the Q1 baryon.

Returning to the mesons, one of course has C' = —1 mesons, which are just the
antiparticles D, D,, etc. Furthermore, one has purely charmed mesons consisting of
a c-quark and its ¢ antiquark, socalled charmonium states. One finds a spectrum of
states with as groundstate the 'Sy bound-state 7.(2980) and the 3S; state J/v(3097).
These states are both below the threshold for decay into two charmed particles, the DD-
threshold (about 3735 MeV). For the 7, the ¢¢ couple can annihilate into (three) gluons,
which in turn produce light quark pairs going into light mesons, e.g. 7. — n'wm. This
is not possible for the J/ty-resonance which has a longer lifetime (I' = 87 keV). The
resonance decays via electromagnetic interactions, e.g. J/¢ — ete™, J/1 — ptpu~ or
J/1p — wmm. For the charmed mesons the P-states lie just above 3400 MeV, while the
first radially excited S-wave lies just below the DD threshold. The spectrum can be
well-understood in a potential with a short-range «;/r behavior and a long-range linear
part as discussed before. In particular the 1/r part is important in determining the shape
of the wave function of the S-wave ground states. This is even more so if one looks at
the corresponding bottomonium spectrum for b-quarks. Several bb-mesons are known, the
most stable one being the 3S; state Y(9460) which is even more stable than the J/t with
'y = 53 keV. In the same way one also has bottom (sometimes called beauty) mesons
(be aware of the charge assignments!) such as B*(5279), which give a good indication of
the b-quark mass and its lifetime (7gx ~ 1072 s). The preferred weak transition of the
b-quark is b — ¢, i.e. often D-mesons are seen in the decay chain of B-mesons.

2.16 Symmetries and conservation laws

2.16.1 Space-time symmetries

There is an intimate connection between symmetries and conservation laws. The most
well-known examples are inversion symmetry, translation invariance and rotational in-
variance. In all of these cases one determines the basic operators that generate the
transformations related to the symmetries in question, e.g. for translations and rotations

Yz +a,y,2) a0 ¢(x)—%a%¢+,,,

= (1 JF%OLPm +. ) W, (2.116)
¥(r,0,6+0a) °2° w(r,o,¢>+a§¢¢+...

= (1 +%aLz ;.. ) . (2.117)

If the symmetry leaves the hamiltonian invariant, the symmetry-generating operators
commute with the hamiltonian, e.g. in case of translation invariance for a system of
many particles one has

[P,H] =0, (2.118)
for P =}~ p,;. One needs to sum over all particles, because translation invariance is found
after translating the whole system, i.e. all particles. Similarly rotational invariance leads

to
[J,H] =0, (2.119)
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for the total angular momentum, J = L + 8 = Y ;(¢; + s;), which is the sum of orbital
angular momentum and spin. As a consequence one can use the total momentum and
total angular momentum as good properties of a system, which are conserved. It leads to
conservation of energy, momentum (three continuous quantum numbers P) and angular
momentum (two discrete quantum numbers J and Mj).

Inversion symmetry is an example of a socalled discrete symmetry (this is a symmetry
without a continuous parameter like the angle in the case of rotations). The corresponding
operator is the parity operator, Py(r) = t(—r) with two possible eigenvalues IT = +1.
When this operator commutes with the hamiltonian, [P, H] = 0, the parity of a system
is conserved. Not all interactions respect inversion symmetry. In particular the weak
interactions with completely different behavior for left- and righthanded fermions do not
respect the symmetry. They even maximally violate inversion symmetry. We will come
back to other discrete space-time symmetries in the section on discrete symmetries.

Conservation of energy and momentum

These are absolute conservation laws, holding for all interactions. The conservation in
a scattering process applies to the total energy of all particles involved in the process.
Important to realize is that one needs to use the relativistic relation between energy and
momentum, which was discussed in section 6.1. This is important in case of excitation
processes, already at the level of atoms or nuclei (binding energies in initial and final
state are different), and in inelastic scattering processes in which one has particles with
different masses in the final state or annihilation/creation of particles and antiparticles
in which particles disappear or appear. Conservation of total momentum applies to the
vector sum P = Y, p,) which must be the same in initial and final state.

Let us consider as an example

v — efe . (2.120)

According to energy conservation, this process could occur if E, > 2mec?. But,
also taking into account momentum conservation, one finds that the process can
actually not occur. To see this, one should realize that E, > 2mec? must hold
in any reference frame. Moreover, since the photon is massless one has (also in
every reference frame) |p,| = E,/c, thus also in the center of mass (CM) frame of
the electron and positron. But in that frame p,+ + p.- = 0, which would not be
allowed by momentum conservation. We note that the creation process can occur
near another particle, e.g. a nucleus. One then has in essence y+ A —+ A+et +e™,
a process where energy and momentum conservation can easily be realized.

In general, we have already seen in section 6.1 that for the decay of a particle into a
final state with a number of particles with masses M; one needs M > >, M; and for a
scattering process into a multiparticle final state s > Y, M;.

Conservation of angular momentum

The total angular momentum obtained by combining all orbital angular momenta and all
spins according to the rules of quantummechanics is conserved. To be precise the quantum
numbers J and M related to the eigenvalues J(J-+1) A” and M h of the operators J? and
J, are the same in initial and final state of a scattering process. As an already discussed
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example, we refer to the fact that processes with on the one side an even and on the other
side an odd number of feremions are forbidden, e.g. n—>p +e~.

Conservation of parity

As mentioned already, this is not an absolute conservation law. It holds for electromag-
netic and strong interactions. Let us illustrate how conservation in strong interactions
can be used to determine the parity of the pion. This was first done by looking at the
process

T +d—n+n, (2.121)

at very low energies. The pion is at these energies actually first caught in an atomic
orbit forming a socalled mesonic atom, which is in its (s-wave) groundstate. With £ = 0,
Sq =1 and S; = 0 one has in initial state J = 1. Looking at the nn states (see sections
on nuclei) the only allowed J = 1 state is the 3P, wave with negative parity. The full
parity analysis gives

I g (—)° = (I1,)* (—)".

Knowing II; = + one finds 11, = —.

2.16.2 Internal quantum numbers

In discussing the basic forces in nature, we have encountered electroweak and color
charges. Furthermore we have encountered families and for the quarks flavors. These
lead to a number of conservation laws. We start with the electroweak quantum numbers.
All the internal quantum numbers are additive with opposite values for antiparticles.

Conservation of charge

Conservation of the total charge is again an absolute conservation law. Without going in
detail here, we mention that it is related to a symmetry, in this case a gauge symmetry.
The charge operator generates phase rotations of the wave functions, ¥(x) — €% (x).
Invariance of a gauge symmetry also requires the presence of massless gauge bosons, in
this case the photon, which is described with the vector potential A which enters because
the symmetry requires minimal substitution, the replacement V — V +ieQ A.

Conservation of lepton number

As far as the weak interactions do not mix families, this would lead to what one could
call a 'family’ quantum number. The existence of such a quantum number would not be
spoiled by strong interactions because the gluons do not distinguish between families or
quark flavors. Certainly in the quark sector the family number is not useful, because the
family structure involves a mixing of flavors (CKM matrix). Remains a family number
for the leptons, referred to as lepton number. In the laboratory this quantum number is
conserved and e.g. explains why

n—pt+e —+ U,
n—>>p-+e +v,
n>p+e +7,.
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At a completely different timescale, the possibility of neutrinos changing from one kind
to another (see section on Neutrinos) allows violation of the lepton number.

Conservation of baryon number

Attributing baryon number B = +1 to baryons and B = —1 to antibaryons, one has an
absolute conservaton law. Baryon number can be traced back to fermion number con-
servation at the quark level and conservation of this number in creation and annihilation
processes. In quark-line diagrams the conservation requires arrows to continue on fermion
lines throughout the diagram.

Conservation of flavor quantum numbers

In strong interactions, flavors of quarks will not change, as discussed in the section on
hadrons. The flavors stay the same, or they are created or annihilated in (oppositely
flavored) quark-antiquark pairs. This leads to conservation of I3, S, C, B and T in strong
interactions. Via a coupling to W-bosons, i.e. weak interactions, the flavor quantum
numbers can change. The conservation laws, hence, are not absolute ones.

For the strong interactions, the mass difference between u- and d-quarks and electro-
magnetic effects are secondary effects. Without these secondary effects one could treat
u and d as properties of one quark with isospin I = 1/2. This implies that not only I3
is a good quantum number for the strong interactions, but also the I quantum number
(I(I + 1) is eigenvalue of I?). All strong interaction particles are members of isospin
multiplets (as we have explicitly constructed before), but also the isospin in initial and
final state must be the same. To find the total isospin of a system of states one must add
the isospins of the particles in the same way as done for spins. As an example, consider

Kt — ntn°. (2.122)

This process has in initial state / = 1/2 and in final state an isospin obtained from two
pions, each member of an I = 1 multiplet. The final state isospin hence is I = 0,1, 2.
The process will not be a strong interaction process. Actually also I3, strangeness S and
parity P are not conserved, which would lead one to the same conclusion. The process,
actually is one of the kaon decay modes, but proceeds via a weak interaction (draw the
quark-line diagram!).
2.16.3 Discrete symmetries
Discrete symmetries that are important for particle physics are

e Parity (P): r » —r and t — ¢,

e Time-reversal (T): r — r and ¢t — —t,

e Charge conjugation (C): particle — antiparticle .

For other quantities the consistent behavior can easily be argued by looking at known
relations like p = mr, £ = r X p, etc. Examples are
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quantity P T remark
t t —t
T —r T
E E E scalar
p —-p —-p vector
L L —L axial-vector
s s —s
A=s-Dp —A A pseudo-scalar
E —FE E
B B -B
A —A —A vector potential!
s-B s-B s-B scalar
s-FE —s-FE —-s-F

In the table we have indicated characteristic behavior of scalars, pseudo-scalars, (polar)
vectors and axial vectors. The interaction terms s - E and s - B are given as examples of
the implications of the symmetries. If P and/or T are good symmetries any interaction
term in the hamiltonian must behave like the energy E. This implies e.g. that a term s-B
(magnetic moment in a B-field) is allowed, but a term like s- E (electric dipole moment in
an FE-field) is forbidden. To look for T-violating processes one has searched for an electric
dipole moment of the neutron, but so far one only has established d,, < 0.6 x 1072® ecm.

To find the behavior of particle states |a; p, \), one uses the wave function, ¥ (r,t) =
exp (—iwt + ik - r) for a plane wave. The requirement that particles have positive ener-
gies, requires for T a transformation of bra’s into ket’s and vice versa. It is a socalled
anti-linear transformation, for which T'(c|a)) = ¢* T'|a).

p T C
la;p, \) | mpla;—p, =) | nr{a; —p, Al | nela; p, — )

The arbitrary phase 7 (intrinsic parity, etc.) that is allowed for any quantummechanical
state is limited to =1 because applying any of these transformations twice must lead to the
original state. The intrinsic parities of quarks and leptons are choosen to be positive, that
of the antiparticles is -1 the parity of photons (described by a vector field) and similarly
gluons is negative,

I, =1.- =+, I = e+ = —, I, = —. (2.123)
The parity of a fermion-antifermion system, thus, is given by
Mgz = (), (2.124)

eg. I, =11, = —.

Time-reversal symmetry becomes important in comparing processes that can run in
two directions. Taking into account the kinematic factors (see Eq. 2.32) and the averaging
of the polarization possibilities one expects for the processes a + b <— ¢ + d the relation

pZﬁl)Q (2s,+1)(2s,+1) (2.125)

o(ed — ab) = o(ab — cd) ( @5t D2sat 1)
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known as the principle of detailed balance. Examples exist such as the comparison in
a+ 2*Mg +— p+27Al. The appearance of spin factors can also be used to determine the
spin of particle. In particular the process 7~ + d <— n + n, already mentioned as a way
to determine the parity of the pion, can also be used to find the spin of the pion (s, = 0),
given the spins of deuteron (sq = 1) and neutron (s, = 1/2).

Charge conjugation, finally, transforms a particle into its antiparticle. Applying this
to a fermion-antifermion system one obtains

= (), (2.126)
ie. Cro = C, = +, while Cp = C, = —. A photon is its own antiparticle, but has
intrinsic C,, = —1 (see exercise 6.9). Since the wave function of N photons must be

symmetric one finds that for N, photons one has C = (—)". The charge-conjugation

quantum number is therefore very appropriate to determine the number of photons (or
gluons) a (neutral) system can couple to.

A convenient tool to study decay into many-pion final states is the socalled G-parity,
which is introduced to include isospin in a consistent way. One finds that a fermion-
antifermion system has G-parity G = (=)¢™**! and that it can only decay into a
system of N, pions with the same G-parity being G = (—)¥=. This is not a new
quantum number but simply a convenient and consistent combined use of C-parity
and isospin.

CONSERVATION RULES
Interactions

quantity strong | electromagnetic weak
energy & momentum | yes yes yes
baryon number yes yes yes
lepton number yes yes yes
charge yes yes yes
I (isospin) yes no no (Al =1/2,1)
S (strangeness) yes yes no (AS = 1,0)
C (charm) yes yes no (AC = 1,0)
B (bottomness) yes yes no (AB = 1,0)
T (weak isospin) no yes yes
Yw no yes yes
P (parity) yes yes no
C' (conjugation) yes yes no Conserva-
cpP yes yes almost tion rules (sum-
T (time reversal) yes yes almost mary)
CPT yes yes yes

CPT symmetry

All interactions are invariant under the combined action of C, P and T, the socalled CPT
theorem. It is fundamental in quantum field theories. Some tests involve the equality of
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masses, lifetimes and magnetic moments of particles and antiparticles:

Ma = Ma
CPT — invariance < r,=r_Ig
Mo = Mg

CP violation

Note that the presence of only a lefthanded neutrino constitutes a maximal violation of
parity (P) in the weak interactions. This was suggested by Yang and Lee and discovered
in 1957 in an experiment looking at the decay of °Co.

The decay of a spin zero 7" into a positron
and (lefthanded) neutrino. The helicity of the

N Z positron must be negative (angular momentum
conservation) and the positrons are attracted to-
t_ t wards the northpole of a magnet. The mirror
Te > e > image is the decay into a (righthanded) neutrino
and a positron with positive helicity flying to-

+ +
s ! wards a southpole of a magnet. In the decay
v v of the pion the positron are seen at the north-

pole, not at the southpole. Conclusion, the mir-
' v ror image does not occur in nature, which we
attribute to the nonexistence of righthanded neu-
. ‘ trinos. The original parity violation experiment
by Wu and her collaborators was done by con-

sidering the S-decay of %°Co.

The absence of a lefthanded antineutrino also means a maximal violation of charge con-
jugation symmetry (C'). Note, however that the combined operation (C'P) transforms vy,
into Tg, hence it is not a priori violated. Actually it turns out that C'P is almost a sym-
metry of the weak interactions. Let us first assume it is a good symmetry and consider
the decay of the KT -particle,

Kt — 7ta°

- atatg.

From angular momentum conservation one has J = 0 for the lefthandside. With spin 0
pions this requires for the first final state £,+,0 = 0 and hence Il,+,0 = +. For the second
decay product one has for the two 7" particles an even value for ,+,+ (symmetry!). This
also implies that the orbital angular momentum of the 7~ with respect to the center
of mass must be even. Hence one necessarily has Il,+,+,- = — for the second decay
product. Since parity is not conserved in the weak interactions both processes are allowed
and indeed observed.

Next, we turn to the neutral kaon systems, K° = d5 and K’ = sd. As far as QCD is
concerned the two states would be degenerate. They are produced in strong interactions,

e.g.
Tp — AK°
Tp — pK‘FO
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(draw quark-line diagrams to convince yourself). The threshold for K° production is the
lowest and one can thus set up an experiment in which only K° particles are produced.
Two remarkable observations are made

e When one makes sure that only K° are produced (containing an s-quark), it turns
out that depending on the distance to the interaction point K’-mesons (containing
an s-quark) are found, which initiate e.g. the reaction Fop — Ant. The probabili-
ties of finding K° or K oscillates (see Exercise 6.10).

e In the decay two almost degenerate states are found, decaying into two and three
pions, respectively, called Kg (lifetime 7 ~ 0.9 x 107!° s) and K (lifetime 7 ~
0.5 x 1077 s), respectively. Their mass difference is extremely small, M; — Mg ~
3.5 x 1072 MeV.

This puzzle is solved if one has physical states that are CP eigenstates. With
CPIK®) =[K"),  CPIK’)=|K")
one can construct two such CP eigenstates,

K = \i@ (1K) - B%), (2.127)

1
%

Looking at pion states one has CP|rm) = +|n7) for 777 or 7970 states, while (if the

K9) = — (IK*) + [K")), (2.128)

orbital angular momentum between pions is zero) CP|rtr 7% = —|rt7 7). If the
physical states are CP eigenstates, one expects
Ks=K, — mn, (2.129)
K, =K) — 7rn (2.130)

We note that an explanation for the physical states being CP eigenstates simply comes
from the fact that a transition (K°|H |F0) exist, e.g. given by the following diagrams,

) W d

e AVAVA Ve e

KO u,ct KO ~ H= M, A
U A Mo

— ———

d W S

With A (requiring twice a weak interaction) being very small, one ends up with two
states with a very small mass difference, which nevertheless immediately imply oscillations
(Exercise 6.10).

It was discovered in 1964 by Cronin and Fitch that CP actually is violated. Here two
effects play a role, the first is a violation because Ks and K} are not exactly equal to
the CP-eigenstates K¥ and K9 (mixing); the second is a violation in decay of the CP-
eigenstates, e.g. Ky — 7 (direct CP violation). The mixing comes from complex entries
in the CKM matrix, which makes the above (still hermitean) hamiltonian complex. It
requires, however, the presence of at least 3 families because otherwise the complex phases
can simply be absorbed in the definition of quark states. Direct CP violation comes among
others from diagrams like
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S These type of diagrams, called Penguin dia-
UC t: J = n grams and in particul_aor the differences in the
KO T -z diagram for K° and K~ coming from complex
é ud n CKM matrix elements, cause direct CP viola-

d > — d tion.

The incorporation of CP-violation in the standard model via complex entries in the CKM-
matrix can of course not really be considered as understanding the origin. To study in
more detail CP-violation, experiments in the B-system are underway, where the effects
are expected to be much larger. One thing one can explicitly do, is check the unitarity
triangle to see if the CKM matrix is unitary.

CP-violation and (assuming CPT a good symmetry) T-violation also is needed to
explain in the big bang scenario the surplus of matter over antimatter in the universe.
One might wonder it this can be explained because we stated CP-violation was small.
Although all visible stuff (atoms) is only matter, this is only about present in a 1 : 10°
ratio with invisible stuff such as (self-conjugate) photons (3 K background radiation) and
(probably) equal amounts of neutrinos and anti-neutrinos left from the big bang.

2.17 Neutrino’s

We already discussed neutrinos and their lefthandedness and we remarked that left- and
righthandedness are good properties only for massless particles. Recently indications
accumulate that neutrinos are not massless, evidence coming from neutrino oscillations.
Oscillations of electron neutrinos from the first family into neutrinos of the other two
families could for instance explain the observed shortage of solar neutrinos. The latter is
a long-standing problem in astrophysics.

The presence of only lefthanded species of a massive fermion at first sight gives trouble.
As discussed in section 6.3, helicity states for a massive fermion are physical (eigenstates
of the free hamiltonian), but necessarily both (positive and negative) helicities exist. This
is a simple consequence of the fact that helicity depends on the observer (moving slower
or faster than the particle).

The solution is the existence of two types of fermions:

e Dirac fermions. These are the most well-known ones for which one has both particles
and antiparticles. Examples are electrons and quarks. One has two chirality states
for the particle (e and e; ) and two for the antiparticle (e}; and e}). The (physical)

helicity states are appropriate linear combinations (overlap factors given in section
6.3).

e Majorana fermions. These are fermions for which particle = antiparticle, similar
as e.g. for photons. In that case the states which we up to now called v, and 7g
are actually the left- and righthanded components of one (Majorana) neutrino. The
(physical) helicity states now are just linear combinations of these two components.
This of course can only work for a neutral fermion.

Note that with the neutrinos being Majorana fermions, the particle-antiparticle arrows
which we assigned to fermion lines in diagrams no longer should be used for neutrinos.
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Lepton number can be violated by two units AL, = 2, etc. With a mass term one also has
the possibility of neutrino oscillations between neutrinos belonging to different families.
This simply depends on the fact if the mass eigenstates are the same or different as the
states entering the interactions. In the case the mass eigenstates are different lepton
numbers of different families can change.

Let us illustrate the phenomenon of oscillations for two (instead of three) neutrinos.
Assume that the quantum mechanical state at production (say a muon neutrino arising
from pion decay) is not an eigenstate of the hamiltonian. Assuming two relevant neutrino
species, these eigenstates of the hamiltonian are two orthogonal states |v1) and |v,) which
are used as our basis. They are eigenstates with definite energies corresponding to slightly
different masses m; and my, i.e. E; = /p?> +m? and Fy = /p? + m3. Thus we have in
general

()Y = ¢ |vi(t)) + e |va(t)) = 1 e F1 |1 (0)) + o e 228 |15 (0)). (2.131)

Assuming that a muon-neutrino produced in the atmosphere is a linear superposition of
the two mass eigenstates v, and s, i.e. at time ¢t = 0,

|v(0)) = cos @ |v1(0)) + sin 0 |v5(0)),
one has at time ¢
lv(t)) = cos@ e "1t |1 (0)) + sin 6 e~ 2! |15(0)),

and the probability to find at time ¢ again a muon-neutrino is

E, — E.
(walo(8)2 = 1 — sin® 20 sin? (%t) . (2.132)

For the situation that m;, my < p one has E; ~ FEs,, both roughly equal to £ = p. The
(tiny) energy difference is
m? —m2 _ Am?

2F 2F 7
After travelling a distance L with approximately the speed of light ¢ (time is L/c) one
then has a survival probability

El—E2%

P(v,) =1 — sin® 20 sin® (Am2 L) =1 — sin® 20 sin® (7r %) (2.133)
with g
Ay =47 A2 (2.134)
or for numerical purposes
Ay [km] = 2.5 %. (2.135)

Numerically a wavelength A\yy = 1000 km corresponds for a neutrino with a typical energy
of 1 GeV to a mass squared difference of Am?c* = (0.05 eV)2.

Neutrino oscillations have been observed for atmospheric (predominantly u-type) neu-
trinos over distances of order thousands of kilometers, and for solar neutrinos with in-
dications that the deficit of electron-type neutrinos (expectation based on solar models)
appears as other type of neutrinos. For solar neutrinos the oscillations are enhanced by
matter effects (MSW) and the conversion of types actually occurs inside the sun.
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2.18 Unification

Many questions remain on the foundation of the Standard Model. For instance, one has
found that there are not more than 3 families of quarks and leptons, at least families with
the same structure, i.e. in essence massless neutrinos.

o [mb]

Ny=3 The Z° resonance shapes shown here are
i Ny=4 based on all (visible) decay modes into
quarks (qq) for five of the six quarks, lep-
tons (£t¢7), and (invisible) decay modes for
2, 3 or 4 neutrino’s. The experimental shape
measured with the LEP accelerator at CERN
points with very small errors to N, = 3.

M2 E
But why three families? Other questions are those about the origin of the quark CKM
mixing matrix and the small violation of C P-invariance, do neutrinos have a mass, and
what is precisely the nature of the Higgs mechanism. Within the Standard Model also
several questions remain on the structure of hadrons, that can not be answered within
perturbative quantum field theory.

Using methods from quantum field theory
one can study the strength of the coupling
constants of the various interactions. For

screening anti—screening instance for QCD the higher order Feyn-
man diagrams, shown left, lead to screen-

ing and anti-screening of the, in this case
color, charge. The anti-screening wins
a = g2/ 4T and the strength of the interactions in-
creases for larger distances and decreases

for smaller distances (or via Fourier trans-

form) higher momenta/energies (known as

asymptotic freedom). For QED the second

o) diagram is absent and the coupling con-
: stant increases for higher energies. It has
been argued that they may meet at some

i high scale, referred to as the GUT (grand
| | | | _ unification theory) scale around 10 GeV

10° 105 10 105 16° E[Gev] % ) |

i.e. distances of the order of 10732 m.

A

electromagnetic

Many (theoretical) attempts are being undertaken to embed the Standard Model in more
elegant theories built for instance on a single symmetry group in order to have only
one coupling constant, or incorporate fermion-boson symmetry (supersymmetry). Also
the incorporation of gravity in the unification is an important goal. Attempts include
consideration of more than 3 space dimensions as required for setting up a consistent
theory in which particles are no longer points in space-time, but (open or closed) strings
moving along a world-sheet instead of a worldline. With the increase of the energy scale
one also goes back to the first instants after the big bang.
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2.19 Exercises

Exercise C.1

Express for two particles (masses m; and my) in the center of mass the momentum in
terms of the energy E“™ = /s. Determine the center of mass momentum in the decay
processes

P’ —ata (M, =770 MeV, M = = 140 MeV),
T — u U, (Mu =106 MeV, M, = 0),

T —e U (M, = 0.5 MeV),
7% — ete” (MZ ~ 91 GeV),
v —sete” (M, =0).

Note: details on kinematics can be found in the appendix on kinematics.

Exercise C.2

Consider the following two decay modes of a pion,
T — e U

— U Uy

The underlying process is quite similar, and for both processes sufficient energy is avail-
able. Use the calculated energy and momentum of the electron and muon to calculate
the overlap between chirality states (lefthanded and righthanded) and helicity states. In-
dicate how lefthandedness of the weak interactions can explain the extremely small ratio
D(m — eve)/T(m — pv,) ~ 1074

Exercise C.3

Check that the Wolfenstein parametrization of the CKM matrix respects unitarity (in an
expansion in A). Show that the unitarity condition for the first and third rows of the
matrix can be represented as a triangle in the complex (p,n) plane.

Exercise C.4

Construct the explicit wave functions of the proton (Eq. 2.104) and neutron. There are
several ways to proceed. One can construct in several ways (starting first with an ud-
configuration or a uu-configuration) a state with the appropriate quantum numbers. After
imposing the right symmetry for the full system (think of all parts of the wave function,
color, spin and isospin) always the same state will emerge.

Exercise C.5

Use the explicit wave functions of proton and neutron to evaluate the expectation value
of the magnetic moment operator. Use the experimental proton and neutron magnetic
moments to determine a nonstrange quark magnetic moment.
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Exercise C.6

In this exercise we will illustrate how a linear potential leads to a linear relation between
the total angular momentum .J of a system and the mass squared M? for large values of
J. This leads to the socalled Regge trajectories for excited ¢q states, for which one has
found relations

J = o+ o' M?,

with o/ = 1/27 Tj being a universal slope, while oy depends on the kind of mesons (pions,
rho-mesons, K-mesons, etc.). Show this relation. For this, realize that for large J one
can use semi-classical arguments (like Bohr quantization in Hydrogen atom). For a linear
potential between light quarks one can use the picture of a rotating rod with constant
(linear) energy density Ty with the (in essence massless) quarks at the ends moving with
the velocity of light.

M /Ld 1o

= T ——,
L V1 — 2
L Toxv

J = dr —
—L v V1 — 1?2

Exercise C.7

Explicitly writing the sum in the deep-inelastic cross section for electron-proton scattering
(Eq. 2.115) gives

4 1 —

o 9 (u(z) +a(z)) + 9 (d(:c) + d(x)) *5 (s(x) +35(z))

(assuming the probability for finding heavier quarks to be zero). In fact the distributions

refer to the proton, u(x) = uP(z), etc. To find the expression for electron-neutron deep

inelastic scattering we use isospin symmetry, d"(z) = uP(z) = u(z), u™(z) = d?(z) = d(x)

and s™(z) = sP(z) = s(x). Show that one finds
4

(u() +u(z)) + 5 (d@) +d(2)) + ¢ (s(z) +5(x))

o

1
9
Use weak interaction vertices to write down to which combinations of quark distributions
the following (charged current) cross sections are proportional, o, ¢, ¢ and o”™.
The experiment can be done for the charged weak current because one needs a final state
lepton that can be detected. In this way one can determine the quark distributions for
separate flavors and distinguish quarks and antiquarks.

Exercise C.8

Construct the Y — I, diagrams for mesons containing a ¢-quark, and those for the B- and
B-mesons containing a b and b-quark respectively. Give names and charge-assignments.
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Exercise C.9

Determine for the decay of a J¥ = 1~ particle, e.g. p® — ff the #*1¢; state of the
fermion-antifermion system. What implies the observation of p® — ete™ thus about the
C' quantum number of the p°? The same argument shows that a photon has JF¢ = 17~.

Exercise C.10

The time evolution for an unstable particle in its rest frame is given by
»(t) = ¥(0) exp(—i Mt —I't/2)
with correspondingly the probability of finding the particle
I(t) = I1(0) exp(—T't) = I(0) exp(—t/T).

Starting with a beam of K° mesons (produced in strong interactions), expand in the
physical states K and Kg which have masses M; and Mg and widths I';, and I'g, and
write down the wave function at time ¢. Show that the intensities of finding K° or K’
states (which via K’ +p— A+ can be identified) vary as a function of time. For
instance, show that

I(KO) — [e—rLt + e—FSt + 26_%(FL+FS)t CcOS (AM‘[;)] ,

NG

where AM = |Mj, — Mg|. What is I (FO). Plot the intensities as a function of ¢/7¢ =
['st using 71,/7s ~ 580 and AM 75 = 0.5.

2.20 Reader Part C - Particles

See also the items on particles in part A

section in notes | section(s) in Brehm and Mullin
6.1 16.1

6.2 16.2, 16.3

6.3.1 16.6, 16.7, 16.14

6.3.2 16.13, 16.16

6.4 16.15, 16.10, 16.11, 16.12
6.5.1

6.5.2

6.5.3 16.6, 16.9

6.6

6.7 16.17

Introduction

1. What are baryons and mesons? What are their possible spins?

2. Discuss ways to find the lifetime of unstable particles? In particular, how can one
measure lifetimes much smaller than 1071% s?
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. What is the criterium for a decay process following from energy and momentum

conservation?

What is the criterium that determines if a scattering process is allowed from energy
and momentum conservation?

Forces between elementary particles

1.

Discuss the basic forces in nature? Which ones are responsible for binding particles
and give examples.

. Explain why the weak interactions are so weak. What is their range?

. In gauge theories based on symmetry groups, the important consequence is the

presence of just one coupling constant. All relative couplings are determined by the
charge operators (in general matrices).

Explain the qualitative behavior that is expected for the cross section in ete™ scat-
tering and in particular the ratio of the cross section into hadrons and that into

pru.

Electroweak interactions

1.

Explain why the decay of a 7t into p*v, is much more probable than the decay
into et v,.

. Draw diagrams for the decay of the 7~ -lepton into leptonic final states.

. Draw the diagram for the weak decay of the neutron.

Hadrons

1.

2.

Express the tension T} in the linear potential in Newtons.

Discuss the microscopic structure of a baryon-baryon-meson vertex, such as the
N N vertex needed in the nucleon-nucleon potential.

. Discuss the ’light’ baryon and meson multiplets (u, d, and s-quarks).

Give the quarkline diagram for particular processes, e.g. 7 p — AK" and also for
the subsequent decay modes of the A (see table in section 6.1).

. Use the N-A mass difference and the color hyperfine splitting for six quarks to

estimate the height of the repulsive core expected in the N N-potential.

. Explain the ratio of magnetic moments for proton and neutron.

Give the various decay modes of, for instance, the D*-meson (see table in section
6.1).
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Symmetries and conservation laws

1.

Which symmetries are related to conservation of energy, momentum, angular mo-
mentum and parity?

. Use conservation rules (or violation thereof) to determine which interaction is re-

sponsible for a specific decay/process, e.g. like in the case of K™ — 770,

. Discuss parity violation in pion decay.

-0 . i .
Why are K° and K degenerate as far as strong interactions is concerned?

. Discuss the phenomenon of K°-K° oscillations.

Neutrinos

1.

2.

What type of neutrinos would one expect to be produced in the Sun?

Discuss neutrino oscillations and calculate the oscillation wavelength in the case of
mixing between two neutrino species with a mass difference of 0.05 eV.

. If a neutrino is of the Majorana type one expects neutrinoless double S-decay. Draw

the diagram for this.
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Appendix A

Angular momentum eigenfunctions

The angular momentum operators are best studied in polar coordinates

x =1 sinf cos p,

y = r sin@ sin g,

z=r cosl
from which one gets
9 9
5r x/r y/r z/r o
o | _ ; 9
55 | = | xcotd ycoth —rsind By
el d
(o2 —Y x 0 0z

0 0
E fr—y —9 _— _— fry h 11 _— —_—
- th <y % z 8@/) 1 (smgp 20 + cot 0 Cosgp&p) ,

: 0 0 . 0 . 0
t, = —ih (za—x—x$> =1h <—cosgp@+cot0 smgp%>,

. L 0
62—2h<xa—y—y8—x>—lh%

Searching eigenfunctions becomes easy if one realizes that the operators only affect the
angular dependence. One has

x x z
tE)=-0) e 6) L 6)-

r r r r r

which shows that the £ operators acting on polynomials of the form
r\ " y n2 zZ\ "3
ONONG

do not change the total degree n; + ny + n3 = £. They only change the degrees of the
different terms in the expressions. Simple statistics is sufficient to see that for a particular

11



degree ¢, there are 20 + 1 functions. These are the eigenfunctions of £2, the spherical
harmonics, which can be distinguished by also considering the operator /., commuting
with £2,

EYM0,0) = L+ 1)R*Y(0, ),

LY (0,0) = mh Y™ (0, p).
Realizing the polynomial structure one e.g. immediately sees that the parity of the Y,"’s is

(—)*. Instead of the combinations x/r, y/r and z/r, it is convenient to use eigenfunctions
of /., which are proportional to ™%,

|3 x+1iy I3 .
}/11(9790):_ @ , = — §81n96w7
3 z 3
YEO(QSO):\/E;:\/E cos 0,
_ |3 x—1y /3 . »
)/11(0,@): 8_7T ” = 8—ﬂsm@e 90.

which are the £ =1 functions. Useful relations are the following,

2041 (£ —|m])! ,
Ym(g — (_\(m+m|)/2 plml ) M
6.0 =) A (L4 |m)! " (cos §) ™7,
where / = 0,1,2,...and m = £,/ — 1,...,—/, and the associated Legendre polynomials

are given by
0+|m)|
|m] _L _Q\m\/2d 2 1\
B @) = gy (1= a®)mV2 o [ (@ = 1)
The m = 0 states are related to the (orthogonal) Legendre polynomials, P, = PP, given
by

4dm
2041
They are defined on the [0, 1] interval and the lowest ones are

Py(cos 0) = Y ().

Py(z) =1, Py(x) =z, PQ(I):%(?)xQ—l).

The ¢ = 2 spherical harmonics are the five(!) quadratic polynomials of degree two,

2 .2 : .
Yig(g )= 15 (2% —y*) £ 2izy _ E G2 g 2
2 i 327 ’

321 r?
15 =) 15 -
YE(0,0)=F S M = Fy o sin @ cos 0 X%,

5 322—-r2 |5
0 _ — 29 —
Y2 (6,0) = 160 2\ 167 (3 cos™0 1> ’

The spherical harmonics form a complete set of functions on the sphere, satisfying the
orthonormality relations

[ A0, 0) Y7 (0.9) = 80 by

12



Appendix B

Some differential equations

B.1 Generalized Laguerre polynomials

For the solution of a dimensionless equation such as that for the Hydrogen atom, Eq. 1.12,
we can turn to an algebraic manipulation program or a mathematical handbook. The

solutions of the equation

. 2p+a+1 1—a®> 1
y”-l—go(l’)y:() with go(x):lp + -

2x 42 4

are given by
y(.T) _ e—:L'/Q x(a+1)/2 L;(.T)

where L7 are polynomials of degree p. They are normalized as

(p+a)!
p!

?

o —X a 2
/0 dr z*tle [Lp(x)} =2p+a+1)

and also satisfy the differential equation

d—2+( +1- )i+ Li(z) =0
xde a :de p| Ly(x) = 0.

(B.4)

Note that depending on books, different conventions are around, differing in the indices

of the polynomials, the normalization, etc. Some useful properties are
T p
I N ¢ S U I S v
da
dx®

Ly(z) = (=)

Some general expressions are

[Lp+a (z)].

Ly(z) =1, Li(x)=1+a—x.
Some recursion relations are

P+1) Ipn() = @2p+at+1—z)L(x) = (p+a) Ly (2),
v Ly (z) = (z —p) Ly(@) + (p+ a) Ly 4 (2),
Ly(z) = Lg_l(x) + Ly (7).
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Some explicit polynomials are

Lo(l')zl,
Ll(l') =1 — T,
1
Lo(xz) =1—2x+ §x2,
1

Ls(z) = 1—3x+%x2 — 636‘3,
2
1

W 3 4

-1
-2
-3

The L,(z) or LaguerreL[p,x] func-
tions for p = 0, 1, 2, and 3.

B.2 Hermite polynomials

1
L}:2(1—§a:>,

Lg(x)=3<1—a:+1x2>.

6
3
2
1
1 2 3 4
-1
-2

The L;(x) or Laguerrel[p,a,x] func-
tions for a = 1 and p = 0, 1, and 2.

The problem of the one-dimensional harmonic oscillator in essence reduces to the differ-

ential equation

Y +go(x)y=0  with go(x) =2n+1—2" (B.10)

for which the solutions are given by

y(z) = e /2 H, (). (B.11)

where H,, are polynomials of degree n. They are normalized as

/_O:O dz e [Hy(2)]% = 2" nl\/7, (B.12)

and satisfy the differential equation

P e ol ) =0 (B.13)
s o+ 2n| Hy(z) = 0. )
Some useful properties are
() = (-] & e (B.11)
n\T) = € don € 5 .
1
x H,(x) = 5 Hy(x)+nH, o (2), (B.15)
d
e H,(z) =2nH,_1(x). (B.16)

22



Some explicit polynomials are

Hy(z) = 1,

Hy(z) = 2z,

Hy(z) = 42 —2,
Hi(z) = 82° —12z.

B.3 Creation and annihilation operators

The harmonic oscillator can be solved in a representation independent way. Starting with
the hamiltonian

H= P + L2 7, (B.17)
2m 2
with noncommuting operators
[z, p|] = ih, (B.18)

one introduces

0=z, + p\/2:;w (B.19)
—x\/;—zpw (B.20)

[a,a'] = 1. (B.21)

satisfying

The hamiltonian can be expressed in the number operator N = a'a,

= w5 ) (V5 o) -3}

= hw{ a+2}—hw{ 5} (B.22)

It is straightforward to find the commutation relations between N and a and a',
[N,a'] =a', and [N,a] = —a. (B.23)
Defining states |n) as eigenstates of N with eigenvalue n, N|n) = n|n) one finds

Nailn) = (n+1)alln),
Naln) = (n—1)aln)

i.e. af and a act as raising and lowering operators. From the normalizations one obtains
afln) = Vn+1|n+1) and aln) = /n|n — 1), and we see that a state |0) must exist
for which N|0) = a|0) = 0. In this way one has found for the harmonic oscillator the
spectrum of eigenstates |n) (with n a non-negative integer) with E,, = (n +1/2)w.
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Appendix C

Angular momentum

Definitions

The angular momentum operator for a particle is £ = r x p. They satisfy the commutation

relations
[0i, 5] = il ey U, (C.1)

Eigenstates in the Hilbert space of functions (in this case only depending on angles) have
been discussed in the appendix on spherical harmonics. In addition particles may have
a spin. This observable corresponds with a vector operator s. These (three) hermitean
operators also satisfy the commutation relations

[si85] = il €ijk Sk, (C.2)

similar to the ones for the angular momentum operator. The spin operators s, however,
commute with the operators » and p and thus also with £. The space in which they act
will be deduced from the commutation relations, which is the full starting point for spin.

Rotation invariance

Without spin, rotation invariance required specific commutation relations with £. In fact
scalar quantities S and vectors V' under rotations behaved like

[0i, Vj] = ih €iji Vi, (C4)

e.g. scalars S = 72, p?, r - p or £2 and vectors V =, p or £.

Including spin vectors s, the notion of behavior under rotations has to be generalized.
Although s is a vector and £ - s a scalar one has [{;,s;] =0 and [(;, € - s| = —ih (£ X s);.
Only the operator

j=4L+s, (C.5)
satisfies
[7:,5] =0, (C.6)
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for all vectors, including s and j itself and all scalars including s? and £ - s.
For a system of many particles the operators 7, p and s for different particles commute.
The sum operators

N N N
L:ZEn, S:an, J:Zjn:L+S, (C.8)

n=1 n=1 n=1
satisfy commutation relations [L;, L;] = the, Ly, [Si, S;] = the, Sk, and [J;, J;] =

th€;ji, Ji. Only the operator J satisfies

[Ji, Vj] = ih €5 Vi, (C.10)

for any scalar S or vector V. Rotation invariance for a system of particles requires
[J,H] = 0.

Spin states

As mentioned above, the commutation relations are all that defines spin. An operator that
commutes with all three spin operators (a socalled Casimir operator) is s> = s7 + 57 + 2,

[Si,Sj] = ihEijk Sk. (Cll)
(8%, 8] = 0. (C.12)

Only one of the three spin operators can be used to label states, for which without loss of
generality s, can be choosen. In addition we can use 82, which commutes with s,. One
writes states x(¥) = |s,m) satisfying

s%|s,m) = A?s(s + 1)|s,m), (C.13)

s.|s,m) =mh|s,m). (C.14)

It is of course a bit premature to take h? s(s+ 1) as eigenvalue. One needs to prove that
the eigenvalue of s? is positive, but this is straightforward as it is the sum of three squared
operators. Since the spin operators are hermitean each term is not just a square but also
the product of the operator and its hermitean conjugate. In the next step, the operators
s, and s, are recombined into

Sy =8, tis,. (C.15)

The commutation relations for these operators are,

[8%,54] = 0, (C.16)
[S2,84] = £h sy, (C.17)
[s4,8_] =2hs,, (C.18)

The first two can be used to show that

s?sils,m) = s18%|s,m) = h*s(s + 1) s.|s, m),

Sy S+|s,m) = (sxs, £ hsy)|s,m)=(m=E1)hsi|s,m),
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hence the name step-operators (raising and lowering operator) which achieve
Sils,m) = cyls,m £ 1).

Furthermore we have s, = s+ and 8 = 2+ (s;s_ +s_s,)/2, from which one finds that

|ci|2 - <57m|SJ:rl:Si|57m> - <s,m|s2 - 55 - [sia 5?]/2|8>m>

= (s,m|s8* — s> Fhs,|s,m)=s(s+1)—m(m=£1).

z

It is convention to use the positive (real) root in

Stls,m) = h\/s(s +1)—m(m+1)|s,m+1)

= =ny/(s—m)(s+m+1)[s,m+1) (C.19)
s_|s,m) = h\/s(s+1)—m(m—1)|s,m—1>
= hy/(s+m)(s —m+1)]s,m —1). (C.20)

This shows that given a state |s, m), we have a whole series of states

cosym—=1), [s,m), |s,m+1),...

But, we can also easily see that since s> —s? = 57 + s must be an operator with positive

z
definite eigenstates that s(s + 1) —m? > 0, i.e. |m| < /s(s+ 1) or strictly |m| < s+ 1.
From the second expressions in Egs C.19 and C.20 one sees that this inequality requires
Mmae = S aS ONe necessary state to achieve a cutoff of the series of states on the upper
side, while m,,,;,, = —s is required as a necessary state to achieve a cutoff of the series of
states on the lower side. Moreover to have both cutoffs the step operators require that
the difference m,0e — Mmin = 28 must be an integer, i.e. the only allowed values of spin
quantum numbers are
s=0,1/2, 1, 3/2,...,

m=s,s—1,...,—s.

Thus for spin states with a given quantum number s, there exist 2s + 1 states.

Matrix representations of spin operators

In the space of spin states with a given quantum number s, we can write the spin operators
as (2s + 1) x (2s + 1) matrices. Let us illustrate this first for spin s = 1/2. Define the
states

1
X(j{/@ or x; or |T) or |1/2,+1/2>E[0],

0
X(_ll/?; or x, or |][|) or |1/2,—1/2>E[1].

Using the definition of the quantum numbers in Eq. C.14 one finds that

(12 0 (00 (01
Sl R B ) BES C R
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For spin 1/2 we find the familiar spin matrices, s = hio/2,

(01 (0 =i (10
=11 0) T o0 ) 7o 1)

For spin 1 we may define the basis states,

1 0 0
=+n=10 |, xW=mLo=|1], W=mo=|o
0 0 1
The spin matrices are then easily written down
10 0 0 vV2 0 0 0 0
s,=h| 00 0 |,sp,=hr|0 0 V2 |.,s-=R|+V2 0 0],
00 —1 0 0 0 0 V2 0

from which also s, and s, can be constructed.

Combining angular momenta

We consider situations in which two sets of angular momentum operators play a role, e.g.

e An electron with spin in an atomic (nf)-orbit (spin s and orbital angular momentum
£ combined into a total angular momentum j = £+ s).

e Two electrons with spin (spin operators s; and s, combined into S = s; + s9).

e Two electrons in atomic orbits (orbital angular momenta £; and €5 combined into
total orbital angular momentum L = £; + £).

e Combining the total orbital angular momentum of electrons in an atom (L) and the
total spin (S) into the total angular momentum J = L + S.

Let us discuss as the generic example
J=73,+7 (C.21)
We have states characterized by the direct product of two states,
J1,m1) @ |j2,ma), (C.22)

which we can write down since not only [j2,j1.] = [§3,J2.] = 0, but also [ji,, jon] =
0. The sum-operator J obviously is not independent, but since the J-operators again
satisfy the well-known angular momentum commutation relations we can look for states
characterized by the commuting operators J? and J, | ...;J, M). It is easy to verify that
of the four operators characterizing the states in Eq. C.22, [J?,ji.] # 0 and [J?, jo.] # 0
(Note that J* contains the operator combination 25, - j», which contains operators like
J1z, which do not commute with j;,). It is easy to verify that one does have

[J?,43] = [J*.43] = 0,
[ij%] = [Jzajg] =0,
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and thus we can relabel the (2j; + 1)(2j2 + 1) states in Eq. C.22 into states characterized

with the quantum numbers

The basic observation in the relabeling is that J, = ji.+ 2. and hence M = my+my. This
leads to the following scheme, in which in the left part the possible m; and mo-values are
given and the upper right part the possible sum-values for M including their degeneracy.

M - .
= It
Mo e o o o o o o o o o o
"y X Iy +
m2 - l - I
) ) +

— o o &
\jl' jz\

L. Since |my| < j; and |ma| < ja, the maximum value for M is j; + jo. This state is
unique.

2. Since J; = ji+ + jou acting on this state is zero, it corresponds to a state with
J = j1 + ja. Then, there must exist other states (in total 2J + 1), which can be
constructed via J_ = ji_ + jo— (in the scheme indicated as the first set of states in
the right part below the equal sign).

3. In general the state with M = j; 4+ jo — 1 is twofold degenerate. One combination
must be the state obtained with J_ from the state with M = j; + 75, the other must
be orthogonal to this state and again represents a 'maximum M -value corresponding
tOJ:j1+j2—1.

4. This procedure goes on till we have reached M = |j; —jo|, after which the degeneracy
is equal to the min{2j; + 1, 2js + 1}, and stays constant till the M-value reaches the
corresponding negative value.

Summarizing, when combining two angular momenta j; and j, one finds resulting angular
momenta J with values

J=g1+j2, it+ja—1,...,|j1— Jal,
going down in steps of one. Note that the total number of states is (as expected)
J1+jo
Y 2J+1) = (21 +1)(2j2+1). (C.24)
J=|j1—j2|
Furthermore we have in combining angular momenta:

half-integer with half-integer — integer
integer with half-integer — half-integer
integer with integer — integer
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Clebsch-Gordon coefficients

The actual construction of states just follows the steps outlined above. Let us illustrate it

for the case of combining two spin 1/2 states. We have four states according to labeling
in Eq. C.22,

|s1,m1) ® |52, M) : 11/2,+1/2) @ [1/2,+1/2) = | 11),
|1/2,+1/2) ® [1/2,-1/2) = [ 11),
11/2,-1/2) ® [1/2,+1/2) = [ |1),
11/2,-1/2) @ [1/2,-1/2) = | |1).

1. The highest state has M = 1 and must be the first of the four states above. Thus
for the labeling |s, s9; S, M)

1/2,1/2:1,+1) = | 11). (C.25)
2. Using S_ = s1_ + so_ we can construct the other S + 1 states.

S_|1/2,1/2;1,+1) = hv/2(1/2,1/2;1,0),
(s1— +s2-)[ TT) = R([ T1) + [ 11)),

and thus .
V2
Continuing with S_ (or in this case using the fact that we have the lowest nonde-
generate M-state) we find

1/2,1/2:1,0) = —=(111) +1 11}). (C.26)

11/2,1/2;1,-1) = | L]). (C.27)

3. The state with M = 0 is twofold degenerate. One combination is already found in
the above procedure. The other is made up of the same two states appearing on
the right hand side in Eq. C.26. Up to a phase, it is found by requiring it to be
orthogonal to the state |1/2,1/2;1,0) or by requiring that S, = s14 + sy gives
zero. The result is ]

— — . C.28

S -1n) (C.28)

The convention for the phase is that the higher mq-value appears with a positive

sign.

1/2,1/2;0,0) =

It is easy to summarize the results in a table, where one puts the states |j;, m;) ®
|72, mg) in the different rows and the states |ji, jo; J, M) in the different columns, i.e.

JiXga | J
: M

36



For the above case we have

1/2x1/2 |1 1 0 1
0o 0 -1

F1/2 +1/21

+1/2 —1/2 I

—1/2 +1/2 1 /i

—1/2 —1/2 1

Note that the recoupling matrix is block-diagonal because of the constraint M = mq+ms..
The coefficients appearing in the matrix are the socalled Clebsch-Gordan coefficients. We
thus have
1. g2 J, M) = > Cjr,ma, jo, oy J, M) |j1,ma) @ |j2, ma). (C.29)
mi,msa
Represented as a matrix as done above, it is unitary (because both sets of states are

normed). Since the Clebsch-Gordan coefficients are choosen real, the inverse is just the
transposed matrix, or
1. M) ® |j2,ma) = > Cj1,ma, jo, ma; J. M) |41, jo; J, M). (C.30)
J,M
In some cases (like combining two spin 1/2 states) one can make use of symmetry argu-
ments. If a particular state has a well-defined symmetry under permutation of states 1
and 2, then all M-states belonging to a particular J-value have the same symmetry (be-
cause ji+ + jot does not alter the symmetry. This could have been used for the 1/2 x 1/2
case, as the highest total M is symmetric, all S = 1 states are symmetric. This is in this
case sufficient to get the state in Eq. C.26.
We will give two other examples. The first example is
1x1/2 3/2  3/2 1/2 3/2 1/2 3/2
+3/2 +1/2 +1/2 —-1/2 —-1/2 -=3/2
+1 +1/2 1
+1 —1/2 1 2
+1/2 NEEEYE
—1 +1/2 JE -2
-1 -1/2 1
for instance needed to obtain the explicit states for an electron with spin in an (2p)-orbit

coupled to a total angular momentum j = 3/2 (indicated as 2p;,,) with m = 1/2 is
(depending on choice of notation)

qb(’f', t) = UZPT(T) % Yll(ev ¢) Xl Jr g Ylo(av ¢) XT)
VEYD(0,9)

VY10, 9)

Usp(T)

The second example is
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1x1 2 2 1 2 1 0 2 1 2

+2 41 41 0 0 -1 -1 =2
+1 1] 1
1 1
1 1
0 +1 1 -/
o Vi V5
+1 -1 JE =V
1 1
0 -1 Lo
Lo e
-1 -1 1

This example, useful in the combination of two spin 1 particles or two electrons in p-waves,
illustrates the symmetry of the resulting wave functions when combining two identical
angular momenta (or spins). The highest angular momentum is symmetric, the next
lower antisymmetric, etc.
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Appendix D

Plane wave states

Plane wave states

Plane wave states are the eigenstates of the hermitean operator p (in this chapter we use
hats to indicate operators) Denoting the eigenstates as |p) or |k) and the eigenvalues as
p = hk,

Dlk) = hk|k). (D.1)
In the Hilbert space of wave functions (¢¥(r) = (r[)) we have, consistent with the
commutation relation [r;, p;] = thd;;
pY(r) = —ih Vi(r). (D.2)
The eigenstates of the momentum operator are
Vg(r) = (rlk) = Vp exp (ik - 7) (D.3)

(This defines p as an arbitrary normalization). A convenient regularization is obtained by
using box normalization, in which case one finds that for one particle in a box with sides
Liie. 0<2x<L,0<y<Land0<z<L (ie density p = 1/L*), the wave function is
found after imposing periodic boundary conditions?,

Vp(r) = # exp(ik-r), (D.4)

with k = (27/L) (ny, ny, n.), showing a density of states in k-space given by (L/27)3.
We have the following properties for plane waves (given in discrete and in continuous
form):

(k|K'y = O o' =P (27m)? 8% (k — K) (orthogonality),

d3k
) = 3 Ik k) = | Gy 10 l), (completeness),
h(k)
d3k )
I:%\k)(@ -/ G, Bk (dentity),
D= 3 k) ik (k] = [ s k) ik .

k

!Periodic boundary conditions must be imposed to avoid getting an overcomplete set of states. For
instance, hermiticity of the momentum operator requires that 1*|~ =0
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The momentum eigenstates can be conveniently used when switching from coordinate to
momentum representation,

v = (o) = [ G (k) i)

-/ % exp (i k- 1) O (k), (D.5)

bk) = (klw) = [ d*r (Rlr)rly)
- /d3r p exp(—ik-r)Y(r), (D.6)

which is of course just Fourier transforming. Common choices for the normalization of
plane waves are p = 1 or p = (27) ™% (non-relativistic) or p = E/M or p = 2F (relativistic).

Conusistency of Eq. D.2 with the properties of momentum states can be checked, e.g.

3 3 ~
k) = [ %mmm\w: [ g 77 ke (i)

. / 5 P (k) (k) = —ihVY(r)

Flux corresponding to plane waves
The flux is obtained from the wave function via the expression for the current,

§lrt) = 51— (0 Vo (Ve)9) = p = po (D7)

The flux corresponding to a plane wave thus is along p and its magnitude is pwv.

Density of states for plane waves

Plane waves are characterized by a vector p = hk. The density of plane waves is

d3p

p(p) d’p = 2nh

(D.8)

We have here left free the normalization of the plane waves.
Rewriting the final state density p(p) in terms of £ and €2 we find for the nonrelativistic
case with £/ = p?/2m

2
3 p . m|p| dQ
pp) 4 = (5o dipl 4, = o dE D, = p(E) dE L, (D.9)
or ] 3/2
m|p 1 <2m>
E) = = — VE. D.1
p( ) 2 h3p (27T)2p h2 ( 0)

(spin degeneracy factor has not yet been included).
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For the relativistic case with E? = p? + m? (using li = ¢ = 1) one has with normaliza-

tion p = (E/m) po,

dE dQ), = p(E) dE
0

2m d3p B 2m p? D) _m p|
(27)32E py  (2m)*2E po " (@2n)?p
or
o) — m|p| _m E? —m?
212 po 212 po

s,
— D.11
47’ ( )

(D.12)

The first way of expressing thus has the advantage of being valid both in the nonrelativistic

and relativistic situation.
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Appendix E

Time-dependent perturbations and
Fermi’s golden rule

For a hamiltonian without explicit time-dependence, i.e. H = H(r,p,...) one has sta-
tionary state solutions of the form |¢) e "/ where |¢) is time-independent and is a
solution of the eigenvalue equation H|p) = E|¢). Given an initial state, there are two
possibilities

1. One starts (e.g. after a measurement) with ¢(0) = |¢;), where ¢; is one of the
cigenstates of H with eigenvalue/energy F;. In that case [1(t)) = |¢;) e~ *Fi/" and
all expectation values of operators (that do not explicitly depend on time) are time-
independent.

2. One starts in a mixed state, say |¢(0)) = |¢1) + |¢2). In that case one has [¢)(t))
= |p1) e ER o) e R o |4h(t)) o |py) + |do) e I ERTEVYR - which leads to
oscillations in expectation values with frequency ~ (FEy — Ey)/h.

In the situation that the hamiltonian of a system contains explicit time dependence, i.e.
H = H(r,p,...,t) one no longer has stationary state solutions of the form |¢) e *F*/"
but is left with |¢) = |o(t)).

Treatment of time-dependent perturbations

Consider the case H = Hy+ AV (t), with a known (time-independent) part for which the
eigenstates and eigen-energies satisfy Hy|o,) = E,|¢,). Using completeness of the states

|pn) one writes .
W) = 3 en(t) [n) 0. (E.1)

Note that one could have absorbed the exponential time-dependence in ¢, (), but not
doing so is more appropriate in perturbation theory, because the time-dependence of ¢,
is then solely due to A V.

By substituting the expression for |¢(¢)) in the Schrodinger equation, one finds

ihép(t) = 3" AVou(t) cu(t) etiomt, (E.2)

51



where V,,, = (¢,|V|¢n) and wy, = (E, — E,)/h. As expected, if AV = 0, the coefficients
are time-independent.
In perturbation theory, one tries a solution of the form

cp(t) = cl(,o) () + )\cz(,l)(t) +..., (E.3)
and find that the time-dependence of a specific order is determined by the the lower order,

R el = 3"V () () et (E.4)

Starting with ¢,(0) = J,; one immediately sees that the first two orders are given by

1) =46, E.5
D D

1 T % Wpyi
&mzﬁéﬁ%mwpw (E.6)

This can straightforwardly been extended and leads to the socalled ‘time-ordered’ expo-
nential, which we will not discuss here.

The quantity |c,(7)|? is the probability to find the system in the state |¢,), which means
the probability for a transition i — p. The first order result is valid if [¢{”) (1) +c{) (7)|? =~ 1.

Fermi’s golden rule

We now return to the perturbative treatment of time-dependence and note that also for a
time-independent interaction V', transitions occur, if the initial state is not an eigenstate
of the full Hamiltonian, but only of Hy. If V is sufficiently weak, we find the result in
first order perturbation theory,

T

V.. T . V.. .
(1) — ﬁ/ +iwpit —_ bt +iwpit
¢y (7) o dt e —hwpie i
Vi T Wi T 2‘/7« : 1 WpiT
- —hcipi (1 — eTiwri ) - _hw; sin(wy;7/2) et er 2, (E.7)
and thus for p # 1,
4 |Vyl? sin®(wyiT/2)
(1) o i 7
P = S (:5)
The function 2( )
sin“(w,,; 7/2
o) = 2T

pi
is for increasing times 7 ever more strongly peaked around wy; = 0. The value at zero is
f(0) = 72/4, the first zeros are at |w,;| = 27/7. Since

sin(wy7/2)  wT
dwy; ———21—2 = — E.

we approximate
. 2 ) 2
S (@i T/2) _TT s, (E.10)

2
Wy 2
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Then we find* 5
PL(r) =75 [Vl 8(B, - E) (E.11)

or for the transition probability per unit time,
5) _ 2T esip o .
P, = - Vil 0(E, — E;) Fermi’s Golden Rule. (E.12)

Although the allowed final state is selected via the energy delta function, it is often possible
that the system can go to many final states, because we are dealing with a continuum. In
that case one needs the density of states p(E), where p(E) dE is the number of states in

an energy interval dE around E. The transition probability per unit time is then given
by

. 2 27
P, = [ dE; p(Eg) S 1Vil* 6(Ey — B = = Vil? p(B) (E.13)

Ep=E;

(Fermi’s Golden Rule No. 2).
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Appendix F

Electromagnetic interactions

F.1 Interactions of matter with electromagnetic fields

We give here a simplified treatment to see the origin of the simplest interactions terms
with electric and magnetic fields. We consider plane waves for the scalar and vector
potential,

o= q5~(k:, w) expli(k - r — wt)], (F.1)
A= A(k,w) expli(k - r — wt)], (F.2)

with w = |k|c, corresponding with the energy and momentum relation, £ = |p|c, for a
massless photon. Although the physical fields are real, we can work with the plane waves
by always taking also the complex conjugate solution into account. The corresponding
behavior for the electric and magnetic fields can be obtained from the potentials!

E = l}?(k,w) expli(k - r — wt)], (F.3)
B = B(k,w) expli(k - 7 — wt)]. (F.4)

with E = —ik ¢+ (w/c) A and B = ik x A. The interaction of matter with an electro-
magnetic field is given by

i = [ d*r [plr) é(r) = §(r) - A(r)]. (F.5)

where p and 7 are the charge and current distribution. The dipole approximation is valid
when the wave length A = 27 /|k| is much larger than the typical size of the system, e.g.
for light (A ~ 6000A4) and atoms (size ~ 1 — 10A). In that case one can restrict oneself
to the first nontrivial term in

expli(k-r—wt)] =e (1 +ik-r+...). (F.6)
1Recall that
1 0A
B=VxA
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One obtains

Ho = [dr [ ik-m) p(r) dlk,w) = (14 ik -7) j(r) - Alk,w) + .. (F.7)
o(r) Bk, 0) + ik -7 p(r) Bk, )

= /d37"
+(r x j(r) - (ik x A(k,w)) + ... (F.8)
= Qoék,w)—D-E(k,w)—p-Bkw)+..., (F.9)

where we have used that i k¢ = —E + (w/c) A and i k x A = B. The charge and current
distributions give rise to charge, electric and magnetic dipole moments,

Q= /dST p(r) = th (F.10)
D= /d37" rp(r) = Zqi T (F.11)
o= /d3r rxj(r) =Y T‘i—e (F.12)

The results after the arrow in the above equations indicate the results for a number
of charges ¢; at position r;, i.e. p(r) = X, ¢ 6*(r — ;). For a neutral system the first
interaction term disappears and the next important one is the interaction with the electric
dipole moment (D).

F.2 Emission and absorption of radiation by atoms

The radiation fields can be described with just a vector potential

cEy(k,w)

W

A =e€(k,w) expli(k - r — wt)] (F.13)

and ¢ = 0. The vector € is called the polarization. One has

E =€ Fy expli(k - r — wt)], (F.14)
B- % Eo expli(k - r — wt)). (F.15)

In the dipole approximation the interaction with matter is given by
V(t)=—D-E(t) = —D -eEye " (F.16)

Although we have a time-dependent interaction, we can proceed as in the derivation of
Fermi’s golden rule. We obtain now

<¢p|D . €|¢Z> EO ei(“}pi*w)T -1

MW () =
% (7) ih i (wpi —w)

(F.17)

which gives as before rise to a delta function 6(w —w,;). With w being the positive photon
frequency, this can only describe absorption of a photon, hw = E, — E; > 0. As discussed
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before, also the complex conjugate solution must be considered, which gives the same
result with w — —w. This gives rise to a delta function §(w + w,;) and describes the
emission of a photon, hiw = —hw,, = E; — E, > 0. The transition probability can be
summarized by 3
() L (w) DT
Pip(7) = =3 (6| D - €l6i)|” - 0(w — |ewpil)- (F.18)

1—p

If one is not working with monochromatic light one has an integral over different fre-
quencies w. Instead of the intensity of the field Ejy one can use the number of incident
photons N(w) (number/(areaxtime)). This number is determined by equating the energy
densities in a frequency interval dw,
1 N(w) hw
u, dw = 5 €0 B (w)dw = de. (F.19)
c

Integrating over the photon frequencies, one sees that the atom absorps or emits photons
of the right frequency leading to a transition rate

. 1 7'('
P, = —— il N(wp) [(0,|D - €|} (F.20)
€p NC
For electrons D = — 3", er; = —e R. For unpolarized light € is arbitrary and averaging

gives a factor 1/3. In terms of the fine structure constant a = e2/4r ¢ ic the averaged
transition rate is

: 4
Wiy = P, = 5 7 alwyil N(lwnl) (0| RI60) " (F.21)

1—p

Note that by treating also the electromagnetic field quantummechanically one finds in
addition to the stimulated absorption or emission rate a spontaneous emission rate

spont. 4 CUZD 2
WiZy" =g a4 (ol Rl (F.22)

governed by the same transition matrix element and thus obeying the same selection rules.
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Appendix G

Aspects of scattering theory

Scattering theory

Finding an appropriate solution of the Schrodinger equation for positive energies is just
the 3-dimensional analogue of the 1-dimensional problem of transmission and reflection.
The time-independent Schrédinger equation (for one particle in an external potential or
two interacting particles in the CM system) is

2m

= SF V), (G.)

(V2 + k) v(r)
where E = h*k?/2m. This is a linear equation with on the righthand a source term. There
is a whole family of solutions of such an equation. Given a solution of the above inhomo-
geneous equation, one can obtain all solutions by adding any of the possible solutions of
the homogeneous equation,

(V2 + &) Ypom () = 0. (G.2)
The solutions of the homogeneous equation are well-known, namely the plane waves,
o(r) = exp(ik - 7), (G.3)

characterized by a wave vector k.
Another systematic way of obtaining the solutions of the homogeneous equation is by
considering the radial Schrodinger equation, i.e. writing

u(r)

the radial wave function u(r) satisfies for the homogeneous equation
azoe+1) o,
(W 2 +k U(T) = 0. (G5)

There are two type of solutions of this equation

e Regular solutions: spherical Bessel functions of the first kind: w(r) = kr j,(kr).
Properties:
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£ .
1 d o
ji(z) = 2 (———) =2 =

z dz z
— sin(z — (7 /2)
z

e Irregular solutions: spherical Bessel functions of the second kind: u(r) = krng(kr).

Properties:
Cos 2
no(z) = — o
¢
1 d\ cosz
_ ¢ 20 —(¢+1)
ne(z) = —2"|——— — z ,
2) < z dz) z
P _cos(z—EW/Z).
z

Equivalently one can use linear combinations, known as Hankel functions,

kr B (kr) = kr (jo(kr) + ine(kr)) =5 (—i)Lett,
kr th)(kr) = kr (Jo(kr) —ing(kr)) == (i)Hethr,
A specific example of an expansion into these spherical solutions, is the expansion

of the plane wave,

exp(ik - 1) = eh* = glhreosd — Z(% +1) i jg(kr) Py(cos 0), (G.6)
£=0

where the Legendre polynomials P, can be also expressed in YEO,

47
Y2(6).
20+ 1 ¢ ()

Py(cos ) =

Asymptotic solution and connection to cross sections

In order to construct solutions of the Schrodinger equation that describe a scattering
process, one wants the appropriate asymptotic behavior, which includes a plane wave
part, describing the incoming part and outgoing spherical waves, describing the scattering
part, pictorially represented below
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We thus require the following asymptotic form,

ikr

P(r) =5 exp(ik-r)+ f(k;0,0). (G.7)

We have seen in the previous chapter that for r — oo, this is a solution of the homogeneous

equation.

It can also simply be checked that the above represents a solution if r — oo, by
inserting it into the homogeneous equation. In order to select the leading part for

large 7 one needs to use that V f(k;0,¢) oc 1/r and V2f(k;0,¢) o< 1/72.

For the asymptotic solution the current corresponding to the first part is given by

_hk

while the second part up to O(1/r) corresponds with a radially outward directed flux of
magnitude
L dh L d d N\ | _ bk |f(k0,0)7
= o lw drd} (drdj )74 m r? . (G.9)
From it, one derives the cross section using that
[Jin| do (0, ¢) = n(0, @) dQY = j, r* dS, (G.10)
ie. p
o
— = |f(k;0,9)|. 11
& |f(k:0.9)] (G.1)

The above considerations require a careful analysis of the forward direction (6 = 0),
where the interference term becomes important. For an acceptable asymptotic scattering
solution one must have that [dS2 j,.|,.—.r = 0 for large R, i.e. that there is no loss of
probability. This leads to the optical theorem or Bohr-Peierls-Placzek relation,

k
Im fel(Q = 0) = E ar, (G12)

where o7 is the total cross section and f,; is the scattering amplitude for elastic scattering.

In order to derive this result, one must consider the full current. Keeping only the
dominant contributions when r — oo, this is given by

2 ikr(1—cos 0)
Jr = %{0089—{— @ + Re [(1 + cos ) 674}
r T

m

Integrating over the polar angle (writing cos § = X) gives for the interference term:

1 i kr(1=X)
Re/ X 1+ X)Xy
1 T
1
_ ikr(1-x))y L+ X)f
_Re/_1d<6 ) —i kr?
_ 2 f(k;0 = 0) Lo ethr=X) g
= Re ( —ikr? ) 72726/—1 ax —ikr? dX (+X)7]
_ 2Imf(k;0=0) 1
T kr? +0 (ﬁ) '
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The interference term thus actually only contributes at forward angles if r — oc.
Neglecting any contribution disappearing faster than 1/r? the integral over the

angles gives
[ a2,

yielding the optical theorem. In fact the result is only derived if the total cross
section is given by the integration over |f|?, but it should be clear that flux conser-
vation needs only to hold if we integrate over elastic and inelastic channels, while
the interference only occurs for the elastic channel. We will encounter the result
again in the section on partial wave expansions.

1 9 Am T
= |- Im 0 =0)],

The integral equation for the scattering amplitude

In order to solve the inhomogeneous equation, we first solve the Green’s function equation
<V2 + k2> G(r,r') = -8 (r —7'). (G.13)
With the help of the Green’s function an inhomogeneous solution for
(V2 + 1) w(r) = p(r),

can be written down, namely

b(r) = — / & G, ') p(r').

By choosing an 'appropriate’ Green’s function one can built in boundary conditions.
Note that the difference between any two Green’s function is a solution of the
homogeneous equation.

It is not difficult to check that two particular Green’s functions in this case are

_exp (Fiklr — 7))
A |r — 7|

GHE(r—r) = (G.14)

In particular G has the correct asymptotic behavior as discussed in the previous section.
As an ezxact solution valid for all r, we can write

/d?’r’ exp (i k|r —r'|)

|r — 7|

P(r)=exp(ik-r)— V(r')¥(r'). (G.15)

21 h?
This result is the desired integral representation of the inhomogenous Schrodinger equa-
tion, which has the advantages that the boundary conditions for interpretation as a scat-
tering solution have been built in. It is therefore a good starting point for approximations

The result for f(k;6,¢) is obtained by taking the limit for r — oo in the integral
equation, in particular

, r.r P r-r

T r2

:}:k o ikr
exp (i k|lr —7'|) ~ exp(ik-r)+...,
|r — /| r
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where k' = k7. This gives

i kr
P(r) = exp(ik-r)— < 5 hQ/d?’r’ exp (—i k' - r") V(r')(r'). (G.16)
T
and thus the exact expression is
fk:6.6) = =~ [ d'r' exp(=ik - 7') V() u(r) (G.17)
T

The Born approximation and beyond

The Born approximation is obtained by using perturbation methods, namely to approxi-
mate in the above expression ¥(7') = exp (i k - '), yielding the result
m

f(k;0,0) = 572 /dsr' exp(iq-r') V(r), (G.18)

where ¢ = k — k. This gives for the cross section the same result as obtained using
Fermi’s golden rule.

We can go beyond the first order result by introducing the scattering amplitude T'.
It is defined by

Vi =To,
where ¢ is the scattering solution and ¢ the incoming plane wave part of it. One then
finds that the integral equation, Vi = V¢ +V GV turns into T = Vop+V GTo,

i.e. an equation for T, .
T=V+VGT, (G.19)

the socalled Lippmann-Schwinger equation. Here G is the Green’s function with
factor —2m/ h? absorbed, which is the inverse of E — Hy. The exact expression for
the scattering amplitude f thus is

m
k;0.¢) = —
Flhki0.6) = — 37
The lowest order (Born) result is the first term in the expansion of Eq. G.19,
T=V+VGV+VGVGV+....

('|T|p). (G.20)

To judge the validity of the Born approximation one checks if the scattering term in the
wave function is small,

<1 (G.21)

/dS ; €Xp (Z]C|’l° |) V(’l"/) Q/J(’f‘/)

=7

2 h2

The disturbance of the plane wave is near r = 0, while for selfconsistency ¥ (r) should be
dominantly plane wave, thus

kr' + ik 21 h?
/d3r' exp (i kr ;1—2 T)V(r') <2
r m
2
27r/ dX/dr P etk X0 (| 27;?
- n’k
dl 27,kr_1 / ~ " — Ao
/T <e )V(T) <— v

We see two limits in which the Born approximation is applicable
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o Weak potentials with a finite range.
Starting with the second of the above estimates, we see for a potential with average
depth V4 and range a one has after bringing the absolute value under the integral

Voa? < h?/m, i.e.
2

h
VE) < W’ (G.22)
a condition where an approximately equal sign usually is already ok.

e High energies (but nonrelativistic!).
In the last of the three expressions the exponential is fast-varying for high momenta
k and can be neglected, so Vya < h? k/m, i.e.

m Vg a?
hQ

mV, a?

72 or E>

ka > (G.23)

Partial wave expansion

At low energies a particle scattering off a target with impact parameter b has an angular

momentum hy/l(¢ + 1) = pb,

If the potential has a finite range a the angular momenta that are important correspond
to b < a. From this we obtain A¢ < pa = hka or { < ka. Therefore it is especially
at low energies convenient to expand into different partial waves, eigenstates of angular
momentum, because the lower partial waves dominate. Also for central potentials, which
satisfy [L, V(r)] = 0, it is useful to expand in partial waves, since each angular momentum
state in that case is a proper scattering solution.

Starting off with the plane wave, we have

e =3 "(20+ 1) jy(kr) Py(cos0). (G.24)

It only contains the ¢-independent spherical harmonics, namely Y,(0) = /(20 + 1) /47 Py(cos 6).
Assuming azimuthal symmetry the scattering amplitude only depends on 6 and also can
be expanded in Legendre polynomials,

f(k;0) => (204 1) fo(k) Pe(cos ). (G.25)

¢

Thus one obtains

Use(r) == D (20+ 1) Py(cosb) it | jo(kr) 4 (—i)
¢

fe(R)| . (G.26)

D)
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Rewriting the scattering wave in the following way,

oo sin(kr — 4w /2 etk
v =z DI e
1 omilkr—tr/2)  gilkr—tr/2) R .
= T T waik)|. @)

Conservation of flux tells us that the incoming and outgoing fluxes should be equal in
magnitude, i.e.
14 2ikfo(k) = 20k), (G.28)

where 6y(k) is called the phase shift. Going back and expressing f;(k) in the phase shift

one finds
e2i0ek) _ 1 eidek) gin 6, (k)

flb) = —F7— = p : (G.29)

and _
rooeis(k) sin(kr — 67];/2 + (54(]{?)).
T

Pl (r) (G.30)

Cross sections and partial waves

At this point it is useful to slightly generalize the result of the previous section. If also
inelastic scattering is possible a particular /-wave amplitude is parametrized

14 2ikfo(k) = n 2%, (G.31)

where 7, is called the elasticity. One then has for the elastic cross section

ngl = |f e 0))2 = 4x \/(25 +1)(20 + 1) fo(k) fo(k) Y (0) Yy (6). (G.32)
2.0

Integrating over angles the orthonormality of the Y,”’s can be used to get
dm . 9
O = 73 > (204 1) sin® 6, (k) (G.33)
¢

The optical theorem, which relates the forward scattering amplitude to the total cross
section gives

2
op = k_z > (204 1) (1 = mp cos2dy), (G.34)
¢

which indeed is identical for purely elastic scattering (7, = 1). The difference is the
inelastic cross section,

Oina = 75 2 (20+ 1) (L= ?). (G.35)
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Appendix H

kinematics in scattering processes

Phase space

The 1-particle state is denoted |p). It is determined by the energy-momentum four vector
p = (F,p) which satisfies p?> = E? — p?> = m?. A physical state has positive energy. The
phase space is determined by the weight factors assigned to each state in the summation
or integration over states, i.e. the 1-particle phase space is

[ gt = | o e i i

(proven in Chapter 2). This is generalized to the multi-particle phase space

. d’p;
e =|| —— H.2
dR(plv 7pn) g (27T)3 2Ez ) ( )
and the reduced phase space element by
dR(Svplv ce 7pn) = (2’/’?)4 64(P - sz) dR(pla s :pn)v (HB)

which is useful because the total 4-momentum of the final state usually is fixed by overall
momentum conservation. Here s is the invariant mass of the n-particle system, s =
(pr+ ...+ pn)? Tt is a useful quantity, for instance for determining the threshold energy
for the production of a final state 1 +2 + ...+ n. In the CM frame the threshold value
for s obviously is
2

n
Sthreshold = (Z mz) . (H4)

i=1
For two particle states |p,,py) we start with the four vectors p, = (F,,p,) and p,

= (Ey, p,) satisfying p?> = m?2 and p; = m?, and the total momentum four-vector P =

Pa + pp. For two particles, the quantity
s=P? = (p, +m)* (H.5)

is referred to as the invariant mass squared. Its square root, /s is for obvious reasons
known as the center of mass (CM) energy.
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To be specific let us consider two frequently used frames. The first is the CM system.
In that case

pa = (B, . q), (H.6)

by = (E;ma _q)v (H7)
It is straightforward to prove that the unknowns in this particular system can be expressed
in the invariants (m,, m;, and s). Prove that in the CM system

| |\/(s—mg—mg)z—élmgmg_\/)\(s,mg,mg)
a@= 4s N 4s

; (H.8)

om S+ mE—my
B, = 2—\/§b7 (H.9)
2

E;m _ s—mi#—mb'
2y/s
The function (s, m? m?) is a function symmetric in its three arguments, which in the
specific case also can be expressed as A(s,m2, m?) = 4(p, - pp)? — 4p> p3.
The second frame considered explicitly is the socalled target rest frame in which one
of the particles (called the target) is at rest. In that case

(H.10)

trf trf

Pa = (Ea 7pa )7 (Hll)
= (s, 0), (H.12)
Also in this case one can express the energy and momentum in the invariants. Prove that

w8 —mi—m}

Ea - Q—TrLb7 (Hl?))
trf )‘(Samgamg)
P =, (H.14)

One can, for instance, use the first relation and the abovementioned threshold value for s
to calculate the threshold for a specific n-particle final state in the target rest frame,

1
E%"(threshold) = — ((Z m;)? —m?2 — m?) . (H.15)
2 my i
Explicit calculation of the reduced two-body phase space element gives
1 d&*p &
dR(s,p1,p2) = b p254(P —p1—Pp2)

(271')2 2E1 2E2

oM 1 d*q

T (2n)24E 1925(\/g — B B)

1 . q°d|q|
= (27{')2 dQ(q)4E1 EQ(S(\/E — E1 — EQ)
which using |q|d|q| = E1 dE, = Ey dE; gives
I - d(Ey + Ey)
= Q(G)———= —FBE - FE
dR(‘SaplapQ) (27_(_)2 d (q) 4(E1 i l;2)5(\/g 1 2)

gl d0@) Vs d)
Amy/s Am 8rs Am

(H.16)

where Ao denotes (s, m?, m3).
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Kinematics of 2 — 2 scattering processes

The simplest scattering process is 2 particles in and 2 particles out. Examples appear in

T +p — T +p (H.17)
— 1™ +n (H.18)
— T4+ +n (H.19)
— (H.20)

The various possibilities are referred to as different reaction channels, where the first is
referred to as elastic channel and the set of all other channels as the inelastic channels.
Of course there are not only 2-particle channels. The initial state, however, usually is
a 2-particle state, while the final state often arises from a series of 2-particle processes
combined with the decay of an intermediate particle (resonance).

Consider the process a+b — c+d. An often used set of invariants are the Mandelstam
variables,

s = (Pa +pb)2 = (pe +pd)2 (H.21)
t = (pa —pe)® = (0b — pa)? (H.22)
u = (po —pa)’ = (P — pe)’ (H.23)

which are not independent as s +t +u = m2 + m; + m? + m2. The variable s is always
larger than the minimal value (m, +m;)?. A specific reaction channel starts contributing
at the threshold value s™" = (3;m;)?. Instead of the scattering angle, which for the
above 2 — 2 process in the case of azimuthal symmetry is defined as p, - p. = cosf one
can use in the CM the invariant

2 CM

t = (pa — Pe) m2+m2 —2E,E.+2qq cos 0",

with ¢ = VAw/2v/s and ¢ = V/Aea/2v/s. The minimum and maximum values for ¢
correspond to 67" being 0 or 180 degrees,

tmer - — mi 4 m?-2E,E.4+2qq
= m2+m’— (5 +mia - m§2)(5 +me —mi) + 2/\)\/. (H.24)
S S

Using the relation between ¢t and cosf™" it is straightforward to express dQ)™" in dt, dt =
2qq dcos™ and obtain for the two-body phase space element

¢ A0 A dO
4r/s 4r  8ms 4rm
dt dt

8T v Aab - 16mq /s

dR(Sapmpd) - (H25)

(H.26)
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